

# A meta-analysis study: Vitamin D receptor genetic polymorphism in Respiratory tuberculosis

Sharma N.<sup>1,2</sup>, Khandelwal V.<sup>2\*</sup> and Mohanty K.K.<sup>1</sup>

1. Department of Immunology, ICMR- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, INDIA

2. Department of Biotechnology, GLA University, Mathura, INDIA

\*vishal.khandelwal@glau.ac.in

## Abstract

Our study performed meta-analysis of all available literature on numerous features of relation concerning vitamin D genetic polymorphisms and pulmonary tuberculosis. PubMed and Springer databases were hunted and out of 365 articles, 40 studies were chosen for the present review to examine the relation of PTB with vitamin D receptors (VDR). A total of 18637 patients and 25515 controls, with 35 investigations on VDR FokI polymorphism, 33 on VDR TaqI polymorphism, 25 on VDR BsmI polymorphism and 22 on VDR ApaI polymorphism were included. To understand the connection of polymorphisms with Tuberculosis (TB) hazard, the odds ratios (ORs) and the conforming 95% confidence intervals (CIs) were estimated rendering to the occurrences of genotypes. P values of 0.05 were considered statistically relevant. Funnel maps were used to evaluate publication bias.

Several published articles observed the relation of FokI, ApaI, BsmI and TaqI gene polymorphism of VDR with pulmonary tuberculosis (PTB). Their outcomes were unpredictable; hence we did a meta-analysis to find the precise relativity of the four. Our findings complement many studies being conducted on various communities across the world to better understand the significance of VDR polymorphism in PTB. FokI, TaqI and ApaI showed risk and TaqI showed no risk of PTB development in the population. Depleted amounts of vitamin D were seen in TB patients. Our analysis exposed the relation between vitamin D receptor gene polymorphism and TB. This meta-analysis shows that VDR FokI polymorphism pays to the hazard of pulmonary TB.

**Keywords:** VDR polymorphism, Vitamin D receptor, Pulmonary tuberculosis.

## Introduction

At present, Tuberculosis (TB) ranks among the primary causes of illness and death on a global scale. World Health Organization (WHO) report of 2023 showed 7.5 million TB in 2022, India being the highest burden country. In 2022, India alone reported for 29% of such deaths<sup>56</sup>.

An up-to-date meta-analysis was performed to originate a farther dependable valuation of the relation among FokI

polymorphisms and TB hazard<sup>8</sup>. Susceptibility to tuberculosis was triggered by a variation in genetic and environmental factor.

The prevalence of Vitamin D insufficiency affects people of all age groups, with an estimated global count of approximately one billion individuals experiencing low levels of Vitamin D<sup>4,31</sup>. This deficiency is observed in both developed and developing nations and it is recognized as a contributing factor to weakened immune systems<sup>32</sup>. Studies said that the vitamin D route is participating in the immune system, specifically in immune cells like macrophages, which enhance the manufacturing of antimicrobial peptides, thereby regulating the inflammatory response<sup>10</sup>. One such defense molecule, known as cathelicidin antimicrobial peptide, operates immunity (innate and adaptive), influencing infections through Toll-like receptors. Cathelicidin expression contributes to restraining the growth of *Mycobacterium tuberculosis* (*M. tb*), a bacterium accountable for tuberculosis<sup>12,23</sup>.

Cathelicidins are a group of proteins characterized by a cationic anti-microbial peptide (CAMP) domain located at their C-terminus. Activation of these proteins occurs through a cut at the N-N-terminal cathelin part of the propeptide and is deposited in the granules of neutrophils, further releasing at sites of microbial infection. Several white blood cells (WBC) are also expressed in this peptide<sup>2,51</sup>. Studies have demonstrated that the introduction of cathelicidin from external sources or the increased expression of cathelicidin within macrophages considerably diminishes the persistence of *M. tb* bacteria privileged the cells when compared to control cells<sup>50</sup>.

Recent studies conclude its non-traditional function in regulating the immune system, which has become increasingly significant due to the high frequency of vitamin D3 deficiency among adults<sup>9,11</sup>. Macrophages, a type of immune cell, are known as vitamin D3 receptors (VDR) that secrete an enzyme called Cyp27B1 (1 $\alpha$ -hydroxylase). This enzyme plays a crucial role in converting 25-hydroxyvitamin D3 into its biological form, 1 $\alpha$ ,25-dihydroxyvitamin D3<sup>25</sup>.

Humans have 4 common VDR gene SNPs: FokI T/C(rs2228570), BsmI G/A (rs1544410), TaqI T/C (rs731236) and ApaI G/T (rs7975232). The locations of VDR BsmI and ApaI are on 8 intron and TaqI on 9 exon and these are occupied in amending the strength of the VDR mRNA<sup>16,52</sup>. At the time of translation, the FokI gene changes its structure (T/C) in exon 2 in the 5' coding section of the gene resulting in a fresh start codon (ATG to ACG) which

leads to a briefer VDR protein of 424 amino acids instead of 427 amino acids<sup>53</sup>. Numerous studies said that VDR gene polymorphism and its effects on resistance against TB are different in the population and the effect is still unknown. In this study, we combined all data related to meta-analysis to show the susceptibility or resistance in PTB infection of four prevalent VDR gene polymorphisms like ApaI, BsmI, FokI and TaqI.

## Material and Methods

**Data collection:** Rigorous literature searches on multiple databases, including PubMed and Springer link SCIIhub and Google Scholar up to December 2022 were done. Keywords to conduct our literature search were Vitamin D receptors (VDR) and *M. tuberculosis* and susceptibility or resistance, ApaI, BsmI, FokI and TaqI polymorphism.

**Table 1**  
**Detail of studies comprised in the FOKI rs 2228570 meta-analysis.**

| First Author                           | Year | Country      | Ethnicity      | Total Cases | Total Control |
|----------------------------------------|------|--------------|----------------|-------------|---------------|
| Selvaraj                               | 2003 | India        | South Asian    | 80          | 120           |
| Bornman                                | 2004 | UK           | Asian          | 416         | 718           |
| Roth                                   | 2004 | Peru         | South American | 200         | 201           |
| Selvaraj                               | 2004 | India        | South Asian    | 46          | 64            |
| W.Liu                                  | 2004 | China        | East Asian     | 120         | 240           |
| Lombard                                | 2006 | South Africa | African        | 95          | 117           |
| Babb                                   | 2007 | South Africa | African        | 249         | 352           |
| Olesen                                 | 2007 | Gambia       | African        | 320         | 344           |
| Søborg                                 | 2007 | Tanzania     | African        | 435         | 416           |
| Wilbur                                 | 2007 | USA          | African        | 91          | 290           |
| Selvaraj                               | 2008 | India        | South Asian    | 51          | 60            |
| Alagarasu                              | 2009 | India        | South Asian    | 105         | 144           |
| Merza                                  | 2009 | Iran         | South Asian    | 117         | 60            |
| Selvaraj                               | 2009 | India        | South Asian    | 65          | 60            |
| Vidyarani                              | 2009 | India        | South Asian    | 40          | 49            |
| Banoei                                 | 2010 | Iran         | South Asian    | 60          | 62            |
| Marashian                              | 2010 | Iran         | South Asian    | 164         | 50            |
| Kang                                   | 2011 | Korea        | East Asian     | 103         | 105           |
| Sharma                                 | 2011 | India        | South Asian    | 238         | 924           |
| Singh                                  | 2011 | India        | South Asian    | 101         | 225           |
| Rathored                               | 2012 | India        | South Asian    | 338         | 205           |
| Joshi                                  | 2013 | India        | South Asian    | 110         | 115           |
| Sinaga                                 | 2014 | Indonesia    | South Asian    | 76          | 76            |
| Ferna'ndez-Mestre                      | 2015 | Venezuela    | African        | 93          | 102           |
| Linlin Wu                              | 2015 | China        | East Asian     | 151         | 453           |
| Salimi                                 | 2015 | Iran         | South Asian    | 120         | 131           |
| Acen                                   | 2016 | Uganda       | African        | 41          | 41            |
| Jafari                                 | 2016 | Iran         | South Asian    | 96          | 122           |
| Lee                                    | 2016 | Taiwan       | East Asian     | 198         | 170           |
| Medapati                               | 2017 | India        | South Asian    | 89          | 83            |
| Devi                                   | 2018 | India        | South Asian    | 169         | 227           |
| Zhang                                  | 2018 | China        | East Asian     | 128         | 59            |
| Beatriz Silva-Ramírez                  | 2019 | Mexican      | African        | 257         | 457           |
| Panda                                  | 2019 | India        | South Asian    | 150         | 150           |
| Maria Eduarda de Albuquerque Borborema | 2020 | Brazil       | African        | 138         | 191           |

**Table 2**  
**Detail of reports comprised in the TAQI rs 731236 meta-analysis.**

| First Author          | Year | Country      | Ethnicity      | Total Cases | Total Control |
|-----------------------|------|--------------|----------------|-------------|---------------|
| Delgado               | 2002 | USA          | African        | 358         | 106           |
| Bornman               | 2004 | UK           | Asian          | 416         | 718           |
| Fitness               | 2004 | UK           | Asian          | 397         | 672           |
| Roth                  | 2004 | Peru         | South American | 200         | 201           |
| Selvaraj              | 2004 | India        | South Asian    | 46          | 64            |
| W.Liu                 | 2004 | China        | East Asian     | 120         | 240           |
| Lombard               | 2006 | South Africa | African        | 95          | 117           |
| Babb                  | 2007 | South Africa | African        | 249         | 352           |
| Olesen                | 2007 | Gambia       | African        | 320         | 344           |
| Søborg                | 2007 | Tanzania     | African        | 435         | 416           |
| Wilbur                | 2007 | USA          | African        | 91          | 290           |
| Selvaraj              | 2008 | India        | South Asian    | 51          | 60            |
| Alagarasu             | 2009 | India        | South Asian    | 105         | 144           |
| Selvaraj              | 2009 | India        | South Asian    | 65          | 60            |
| Vidyarani             | 2009 | India        | South Asian    | 40          | 49            |
| Banoei                | 2010 | Iran         | South Asian    | 60          | 62            |
| Marashian             | 2010 | Iran         | South Asian    | 164         | 50            |
| Kang                  | 2011 | Korea        | East Asian     | 103         | 105           |
| Sharma                | 2011 | India        | South Asian    | 238         | 924           |
| Singh                 | 2011 | India        | South Asian    | 101         | 225           |
| Rathored              | 2012 | India        | South Asian    | 338         | 205           |
| Fernaández-Mestre     | 2015 | Venezuela    | African        | 93          | 102           |
| Linlin Wu             | 2015 | China        | East Asian     | 151         | 453           |
| Salimi                | 2015 | Iran         | South Asian    | 120         | 131           |
| Harishankar           | 2016 | India        | South Asian    | 90          | 89            |
| Jafari                | 2016 | Iran         | South Asian    | 96          | 122           |
| Lee                   | 2016 | Taiwan       | East Asian     | 198         | 170           |
| Panwar                | 2016 | India        | South Asian    | 106         | 106           |
| Rizvi                 | 2016 | India        | South Asian    | 130         | 130           |
| Medapati              | 2017 | India        | South Asian    | 89          | 83            |
| Devi                  | 2018 | India        | South Asian    | 169         | 227           |
| Zhang                 | 2018 | China        | East Asian     | 128         | 59            |
| Beatriz Silva-Ramírez | 2019 | Mexican      | African        | 257         | 457           |

**Criteria for Inclusion and exclusion:** Criteria for searching articles were: (1) The studies focused on ApaI, BsmI, FokI and TaqI VDR polymorphism with PTB, (2) The studies followed an independent case-control design, either based on hospital or population, (3) Comprehensive data of both frequencies genotypic and allelic, (4) Studies need comprehensive statistical indices, providing adequate data to measure odds ratios (OR) with confidence intervals (CI) of 95%, (5) Occurrence of genotype in cases and controls had to be within Hardy-Weinberg equilibrium (HWE), (6) Articles were considered in only English language.

Several reasons led to the exclusion of certain studies: (1) Studies from which data could not be extracted from the published results, were excluded, (2) Studies with inappropriate outcomes were not included (3) To avoid

redundancy, duplicate studies were excluded, (4) Only case studies were not considered for this analysis; (5) Studies lacking all three genotype frequencies were excluded.

**Data extraction:** In our study, we independently examined all the appropriate articles, examining the essential criteria of every paper and extracting data using uniform data-abstraction forms. The information extracted for the literature encompassed the name of the first author, publication year, ethnicity, total cases and control. In case of any disagreements, they were determined through discussion. The description of the data involved in this meta-analysis investigating the relation of PTB with SNPs of VDR polymorphisms FokI, BsmI, ApaI and TaqI, as well as the genotype dispersal from each study, are presented in tables 5 to 8.

**Table 3**  
**Detail of analyses comprised in the BSMI rs 1544410 meta-analysis.**

| First Author          | Year | Country      | Ethnicity   | Total Cases | Total Control |
|-----------------------|------|--------------|-------------|-------------|---------------|
| Selvaraj              | 2003 | India        | South Asian | 80          | 120           |
| Bornman               | 2004 | UK           | Asian       | 416         | 718           |
| Fitness               | 2004 | UK           | Asian       | 397         | 672           |
| Selvaraj              | 2004 | India        | South Asian | 46          | 64            |
| Lombard               | 2006 | South Africa | African     | 95          | 117           |
| Olesen                | 2007 | Gambia       | African     | 320         | 344           |
| Selvaraj              | 2008 | India        | South Asian | 51          | 60            |
| Alagarasu             | 2009 | India        | South Asian | 105         | 144           |
| Merza                 | 2009 | Iran         | South Asian | 117         | 60            |
| Selvaraj              | 2009 | India        | South Asian | 65          | 60            |
| Vidyarani             | 2009 | India        | South Asian | 40          | 49            |
| Banoei                | 2010 | Iran         | South Asian | 60          | 62            |
| Marashian             | 2010 | Iran         | South Asian | 164         | 50            |
| Kang                  | 2011 | Korea        | East Asian  | 103         | 105           |
| Sharma                | 2011 | India        | South Asian | 238         | 924           |
| Singh                 | 2011 | India        | South Asian | 101         | 225           |
| Rathored              | 2012 | India        | South Asian | 338         | 205           |
| Joshi                 | 2013 | India        | South Asian | 110         | 115           |
| Sinaga                | 2014 | Indonesia    | South Asian | 76          | 76            |
| Salimi                | 2015 | Iran         | South Asian | 120         | 131           |
| Jafari                | 2016 | Iran         | South Asian | 96          | 122           |
| Lee                   | 2016 | Taiwan       | East Asian  | 198         | 170           |
| Devi                  | 2018 | India        | South Asian | 169         | 227           |
| Zhang                 | 2018 | China        | East Asian  | 128         | 59            |
| Beatriz Silva-Ramírez | 2019 | Mexican      | African     | 257         | 457           |

**Table 4**  
**Detail of readings comprised in the APAI rs 7975232 meta-analysis.**

| First Author          | Year | Country      | Ethnicity   | Total Cases | Total Control |
|-----------------------|------|--------------|-------------|-------------|---------------|
| Selvaraj              | 2003 | India        | South Asian | 80          | 120           |
| Bornman               | 2004 | UK           | Asian       | 416         | 718           |
| Fitness               | 2004 | UK           | Asian       | 397         | 672           |
| Selvaraj              | 2004 | India        | South Asian | 46          | 64            |
| Lombard               | 2006 | South Africa | African     | 95          | 117           |
| Babb                  | 2007 | South Africa | African     | 249         | 352           |
| Olesen                | 2007 | Gambia       | African     | 320         | 344           |
| Søborg                | 2007 | Tanzania     | African     | 435         | 416           |
| Selvaraj              | 2008 | India        | South Asian | 51          | 60            |
| Alagarasu             | 2009 | India        | South Asian | 105         | 144           |
| Selvaraj              | 2009 | India        | South Asian | 65          | 60            |
| Vidyarani             | 2009 | India        | South Asian | 40          | 49            |
| Marashian             | 2010 | Iran         | South Asian | 164         | 50            |
| Sharma                | 2011 | India        | South Asian | 238         | 924           |
| Fernaández-Mestre     | 2015 | Venezuela    | African     | 93          | 102           |
| Jafari                | 2016 | Iran         | South Asian | 96          | 122           |
| Lee                   | 2016 | Taiwan       | East Asian  | 198         | 170           |
| Panwar                | 2016 | India        | South Asian | 106         | 106           |
| Rizvi                 | 2016 | India        | South Asian | 130         | 130           |
| Devi                  | 2018 | India        | South Asian | 169         | 227           |
| Zhang                 | 2018 | China        | East Asian  | 128         | 59            |
| Beatriz Silva-Ramírez | 2019 | Mexican      | African     | 257         | 457           |

**Table 5**  
**Genotype distribution of VDR FOK1 polymorphism**

| First Author                           | Year | Country      | Genotype Cases |     |     | Genotype Control |     |     |
|----------------------------------------|------|--------------|----------------|-----|-----|------------------|-----|-----|
|                                        |      |              | FF             | Ff  | ff  | FF               | Ff  | Ff  |
| Selvaraj <sup>42</sup>                 | 2003 | India        | 43             | 29  | 8   | 78               | 36  | 6   |
| Bornman <sup>7</sup>                   | 2004 | UK           | 258            | 138 | 20  | 444              | 242 | 32  |
| Roth <sup>39</sup>                     | 2004 | Peru         | 119            | 60  | 21  | 109              | 78  | 14  |
| Selvaraj <sup>43</sup>                 | 2004 | India        | 28             | 15  | 3   | 38               | 23  | 3   |
| W.Liu <sup>26</sup>                    | 2004 | China        | 29             | 63  | 28  | 85               | 120 | 35  |
| Lombard <sup>27</sup>                  | 2006 | South Africa | 62             | 30  | 3   | 90               | 24  | 3   |
| Babb <sup>5</sup>                      | 2007 | South Africa | 132            | 104 | 13  | 203              | 129 | 20  |
| Olesen <sup>34</sup>                   | 2007 | Gambia       | 198            | 106 | 16  | 207              | 118 | 19  |
| Søborg <sup>49</sup>                   | 2007 | Tanzania     | 19             | 128 | 288 | 21               | 128 | 267 |
| Wilbur <sup>55</sup>                   | 2007 | USA          | 64             | 26  | 1   | 165              | 120 | 5   |
| Selvaraj <sup>44</sup>                 | 2008 | India        | 31             | 16  | 4   | 27               | 33  | 0   |
| Alagarasu <sup>3</sup>                 | 2009 | India        | 65             | 31  | 9   | 81               | 59  | 4   |
| Merza <sup>30</sup>                    | 2009 | Iran         | 67             | 46  | 4   | 35               | 25  | 0   |
| Selvaraj <sup>41</sup>                 | 2009 | India        | 33             | 29  | 3   | 33               | 26  | 1   |
| Vidyarani <sup>54</sup>                | 2009 | India        | 23             | 14  | 3   | 20               | 29  | 0   |
| Banoei <sup>6</sup>                    | 2010 | Iran         | 30             | 21  | 9   | 29               | 27  | 6   |
| Marashian <sup>28</sup>                | 2010 | Iran         | 97             | 57  | 10  | 15               | 30  | 5   |
| Kang <sup>22</sup>                     | 2011 | Korea        | 30             | 58  | 15  | 41               | 43  | 21  |
| Sharma <sup>45</sup>                   | 2011 | India        | 113            | 95  | 30  | 585              | 311 | 28  |
| Singh <sup>48</sup>                    | 2011 | India        | 55             | 40  | 6   | 96               | 110 | 19  |
| Rathored <sup>37</sup>                 | 2012 | India        | 175            | 115 | 48  | 118              | 80  | 7   |
| Joshi <sup>21</sup>                    | 2013 | India        | 51             | 46  | 13  | 63               | 41  | 11  |
| Sinaga <sup>47</sup>                   | 2014 | Indonesia    | 27             | 42  | 7   | 30               | 34  | 12  |
| Ferna'ndez-Mestre <sup>17</sup>        | 2015 | Venezuela    | 34             | 47  | 12  | 26               | 60  | 16  |
| Linlin Wu <sup>57</sup>                | 2015 | China        | 57             | 70  | 24  | 226              | 181 | 46  |
| Salimi <sup>40</sup>                   | 2015 | Iran         | 65             | 44  | 11  | 93               | 31  | 7   |
| Acen <sup>1</sup>                      | 2016 | Uganda       | 36             | 3   | 2   | 38               | 1   | 2   |
| Jafari <sup>20</sup>                   | 2016 | Iran         | 41             | 50  | 5   | 55               | 61  | 6   |
| Lee <sup>24</sup>                      | 2016 | Taiwan       | 44             | 104 | 50  | 51               | 87  | 32  |
| Medapati <sup>29</sup>                 | 2017 | India        | 5              | 76  | 8   | 12               | 61  | 10  |
| Devi <sup>15</sup>                     | 2018 | India        | 59             | 106 | 4   | 119              | 90  | 18  |
| Zhang <sup>58</sup>                    | 2018 | China        | 14             | 61  | 53  | 21               | 25  | 13  |
| Beatriz Silva-Ramírez <sup>46</sup>    | 2019 | Mexican      | 62             | 119 | 76  | 159              | 218 | 80  |
| Panda <sup>35</sup>                    | 2019 | India        | 55             | 58  | 37  | 86               | 51  | 13  |
| de Albuquerque Borborema <sup>13</sup> | 2020 | Brazil       | 88             | 45  | 5   | 110              | 59  | 22  |

**Table 6**  
**Genotype distribution of VDR TAQ1 polymorphism**

| First Author           | Year | Country      | Genotype Cases |     |    | Genotype Control |     |    |
|------------------------|------|--------------|----------------|-----|----|------------------|-----|----|
|                        |      |              | TT             | Tt  | tt | TT               | Tt  | Tt |
| Delgado <sup>14</sup>  | 2002 | USA          | 325            | 30  | 3  | 96               | 10  | 0  |
| Bornman <sup>7</sup>   | 2004 | UK           | 258            | 138 | 20 | 444              | 242 | 32 |
| Fitness <sup>18</sup>  | 2004 | UK           | 261            | 118 | 18 | 384              | 241 | 47 |
| Roth <sup>39</sup>     | 2004 | Peru         | 119            | 60  | 21 | 109              | 78  | 14 |
| Selvaraj <sup>43</sup> | 2004 | India        | 28             | 15  | 3  | 38               | 23  | 3  |
| W.Liu <sup>26</sup>    | 2004 | China        | 29             | 63  | 28 | 85               | 120 | 35 |
| Lombard <sup>27</sup>  | 2006 | South Africa | 62             | 30  | 3  | 90               | 24  | 3  |
| Babb <sup>5</sup>      | 2007 | South Africa | 132            | 104 | 13 | 203              | 129 | 20 |
| Olesen <sup>34</sup>   | 2007 | Gambia       | 198            | 106 | 16 | 207              | 118 | 19 |

|                                     |      |           |     |     |     |     |     |     |
|-------------------------------------|------|-----------|-----|-----|-----|-----|-----|-----|
| Søborg <sup>49</sup>                | 2007 | Tanzania  | 19  | 128 | 288 | 21  | 128 | 267 |
| Wilbur <sup>55</sup>                | 2007 | USA       | 64  | 26  | 1   | 165 | 120 | 5   |
| Selvaraj <sup>44</sup>              | 2008 | India     | 31  | 16  | 4   | 27  | 33  | 0   |
| Alagarasu <sup>3</sup>              | 2009 | India     | 65  | 31  | 9   | 81  | 59  | 4   |
| Selvaraj <sup>41</sup>              | 2009 | India     | 33  | 29  | 3   | 33  | 26  | 1   |
| Vidyarani <sup>57</sup>             | 2009 | India     | 23  | 14  | 3   | 20  | 29  | 0   |
| Banoei <sup>6</sup>                 | 2010 | Iran      | 30  | 21  | 9   | 29  | 27  | 6   |
| Marashian <sup>28</sup>             | 2010 | Iran      | 97  | 57  | 10  | 15  | 30  | 5   |
| Kang <sup>22</sup>                  | 2011 | Korea     | 30  | 58  | 15  | 41  | 43  | 21  |
| Sharma <sup>45</sup>                | 2011 | India     | 113 | 95  | 30  | 585 | 311 | 28  |
| Singh <sup>48</sup>                 | 2011 | India     | 55  | 40  | 6   | 96  | 110 | 19  |
| Rathored <sup>37</sup>              | 2012 | India     | 175 | 115 | 48  | 118 | 80  | 7   |
| Ferna ndez-Mestre <sup>17</sup>     | 2015 | Venezuela | 34  | 47  | 12  | 26  | 60  | 16  |
| Linlin Wu <sup>57</sup>             | 2015 | China     | 57  | 70  | 24  | 226 | 181 | 46  |
| Salimi <sup>40</sup>                | 2015 | Iran      | 65  | 44  | 11  | 93  | 31  | 7   |
| Harishankar <sup>19</sup>           | 2016 | India     | 36  | 39  | 15  | 42  | 39  | 8   |
| Jafari <sup>20</sup>                | 2016 | Iran      | 41  | 50  | 5   | 55  | 61  | 6   |
| Lee <sup>24</sup>                   | 2016 | Taiwan    | 44  | 104 | 50  | 51  | 87  | 32  |
| Panwar <sup>36</sup>                | 2016 | India     | 66  | 28  | 12  | 90  | 14  | 2   |
| Rizvi <sup>38</sup>                 | 2016 | India     | 92  | 27  | 11  | 104 | 22  | 4   |
| Medapati <sup>29</sup>              | 2017 | India     | 5   | 76  | 8   | 12  | 61  | 10  |
| Devi <sup>15</sup>                  | 2018 | India     | 59  | 106 | 4   | 119 | 90  | 18  |
| Zhang <sup>58</sup>                 | 2018 | China     | 14  | 61  | 53  | 21  | 25  | 13  |
| Beatriz Silva-Ramirez <sup>46</sup> | 2019 | Mexican   | 62  | 119 | 76  | 159 | 218 | 80  |

**Table 7**  
**Genotype distribution of VDR BSMI polymorph**

| First Author                        | Year | Country      | Genotype Cases |     |    | Genotype Control |     |    |
|-------------------------------------|------|--------------|----------------|-----|----|------------------|-----|----|
|                                     |      |              | BB             | Bb  | bb | BB               | Bb  | Bb |
| Selvaraj <sup>42</sup>              | 2003 | India        | 43             | 29  | 8  | 78               | 36  | 6  |
| Bornman <sup>7</sup>                | 2004 | UK           | 258            | 138 | 20 | 444              | 242 | 32 |
| Fitness <sup>18</sup>               | 2004 | UK           | 261            | 118 | 18 | 384              | 241 | 47 |
| Selvaraj <sup>43</sup>              | 2004 | India        | 28             | 15  | 3  | 38               | 23  | 3  |
| Lombard <sup>27</sup>               | 2006 | South Africa | 62             | 30  | 3  | 90               | 24  | 3  |
| Olesen <sup>34</sup>                | 2007 | Gambia       | 198            | 106 | 16 | 207              | 118 | 19 |
| Selvaraj <sup>44</sup>              | 2008 | India        | 31             | 16  | 4  | 27               | 33  | 0  |
| Alagarasu <sup>3</sup>              | 2009 | India        | 65             | 31  | 9  | 81               | 59  | 4  |
| Merza <sup>30</sup>                 | 2009 | Iran         | 67             | 46  | 4  | 35               | 25  | 0  |
| Selvaraj <sup>41</sup>              | 2009 | India        | 33             | 29  | 3  | 33               | 26  | 1  |
| Vidyarani <sup>54</sup>             | 2009 | India        | 23             | 14  | 3  | 20               | 29  | 0  |
| Banoei <sup>6</sup>                 | 2010 | Iran         | 30             | 21  | 9  | 29               | 27  | 6  |
| Marashian <sup>28</sup>             | 2010 | Iran         | 97             | 57  | 10 | 15               | 30  | 5  |
| Kang <sup>22</sup>                  | 2011 | Korea        | 30             | 58  | 15 | 41               | 43  | 21 |
| Sharma <sup>45</sup>                | 2011 | India        | 113            | 95  | 30 | 585              | 311 | 28 |
| Singh <sup>48</sup>                 | 2011 | India        | 55             | 40  | 6  | 96               | 110 | 19 |
| Rathored <sup>37</sup>              | 2012 | India        | 175            | 115 | 48 | 118              | 80  | 7  |
| Joshi <sup>21</sup>                 | 2013 | India        | 51             | 46  | 13 | 63               | 41  | 11 |
| Sinaga <sup>47</sup>                | 2014 | Indonesia    | 27             | 42  | 7  | 30               | 34  | 12 |
| Salimi <sup>40</sup>                | 2015 | Iran         | 65             | 44  | 11 | 93               | 31  | 7  |
| Jafari <sup>20</sup>                | 2016 | Iran         | 41             | 50  | 5  | 55               | 61  | 6  |
| Lee <sup>24</sup>                   | 2016 | Taiwan       | 44             | 104 | 50 | 51               | 87  | 32 |
| Devi <sup>15</sup>                  | 2018 | India        | 59             | 106 | 4  | 119              | 90  | 18 |
| Zhang <sup>58</sup>                 | 2018 | China        | 14             | 61  | 53 | 21               | 25  | 13 |
| Beatriz Silva-Ramirez <sup>46</sup> | 2019 | Mexican      | 62             | 119 | 76 | 159              | 218 | 80 |

**Table 8**  
**Genotype distribution of VDR APAI polymorphism**

| First Author                        | Year | Country      | Genotype Cases |     |     | Genotype Control |     |     |
|-------------------------------------|------|--------------|----------------|-----|-----|------------------|-----|-----|
|                                     |      |              | AA             | Aa  | aa  | AA               | Aa  | AA  |
| Selvaraj <sup>42</sup>              | 2003 | India        | 43             | 29  | 8   | 78               | 36  | 6   |
| Bornman <sup>7</sup>                | 2004 | UK           | 258            | 138 | 20  | 444              | 242 | 32  |
| Fitness <sup>18</sup>               | 2004 | UK           | 261            | 118 | 18  | 384              | 241 | 47  |
| Selvaraj <sup>43</sup>              | 2004 | India        | 28             | 15  | 3   | 38               | 23  | 3   |
| Lombard <sup>27</sup>               | 2006 | South Africa | 62             | 30  | 3   | 90               | 24  | 3   |
| Babb <sup>5</sup>                   | 2007 | South Africa | 132            | 104 | 13  | 203              | 129 | 20  |
| Olesen <sup>34</sup>                | 2007 | Gambia       | 198            | 106 | 16  | 207              | 118 | 19  |
| Søborg <sup>49</sup>                | 2007 | Tanzania     | 19             | 128 | 288 | 21               | 128 | 267 |
| Selvaraj <sup>44</sup>              | 2008 | India        | 31             | 16  | 4   | 27               | 33  | 0   |
| Alagarasu <sup>3</sup>              | 2009 | India        | 65             | 31  | 9   | 81               | 59  | 4   |
| Selvaraj <sup>41</sup>              | 2009 | India        | 33             | 29  | 3   | 33               | 26  | 1   |
| Vidyarani <sup>54</sup>             | 2009 | India        | 23             | 14  | 3   | 20               | 29  | 0   |
| Marashian <sup>28</sup>             | 2010 | Iran         | 97             | 57  | 10  | 15               | 30  | 5   |
| Sharma <sup>45</sup>                | 2011 | India        | 113            | 95  | 30  | 585              | 311 | 28  |
| Ferna'ndez-Mestre <sup>17</sup>     | 2015 | Venezuela    | 34             | 47  | 12  | 26               | 60  | 16  |
| Jafari <sup>20</sup>                | 2016 | Iran         | 41             | 50  | 5   | 55               | 61  | 6   |
| Lee <sup>24</sup>                   | 2016 | Taiwan       | 44             | 104 | 50  | 51               | 87  | 32  |
| Panwar <sup>36</sup>                | 2016 | India        | 66             | 28  | 12  | 90               | 14  | 2   |
| Rizvi <sup>38</sup>                 | 2016 | India        | 92             | 27  | 11  | 104              | 22  | 4   |
| Devi <sup>15</sup>                  | 2018 | India        | 59             | 106 | 4   | 119              | 90  | 18  |
| Zhang <sup>58</sup>                 | 2018 | China        | 14             | 61  | 53  | 21               | 25  | 13  |
| Beatriz Silva-Ramírez <sup>46</sup> | 2019 | Mexican      | 62             | 119 | 76  | 159              | 218 | 80  |

**Statistical scrutiny:** STATA, type 13.0 (STATA Corp., College Station, TX, USA) was applied for the data scrutiny. The relationship of BsmI, ApaI, FokI and TaqI polymorphisms in the jeopardy of PTB was evaluated by calculating pooled ORs and their consequent 95% CIs. A random-effect form was employed when heterogeneity exceeded 50%, as measured by the  $I^2$  method, while a fixed-effect form was taken into consideration when heterogeneity was below 50%. To check for publication bias, a funnel map was visually inspected. A P-value less than 0.05 was considered statistically significant<sup>33</sup>.

Various genetic forms were applied for the analysis. For the FokI polymorphism, the allelic form compared F vs. f, the dominant form compared FF+Ff vs. ff and the recessive form compared ff vs. ff+FF. For the TaqI polymorphism, the allelic form compared T vs. t, the dominant form compared TT+Tt vs. tt and the recessive form compared tt vs. tT+TT. For the BsmI polymorphism, the allelic form compared B vs. b, the dominant form compared BB+Bb vs. bb and the recessive form compared bb vs. bB+BB.

Lastly, for the ApaI polymorphism, the allelic form compared A vs. a, the dominant form compared AA+Aa vs. aa and the recessive form compared aa vs. aA+AA. To measure

the relation between each polymorphism and the hazard of PTB, these genetic representations were used.

## Results

**Relation of the FOKI VDR polymorphism with PTB:** To understand the relation of the FOKI polymorphism with PTB, 35 eligible studies were included. Fixed-effects forms were used. In our analysis, we found a significant association in all the forms including the allele form: f vs F (OR = 0.17; 95% CI = -0.37, 0.04; P = 0.00) (Fig. 2), dominant form: FF+Ff vs. ff (OR = -0.16, 95% CI = -0.33, 0.00; P = 0.00) (Fig. 3), recessive form: ff vs FF+Ff (OR = -0.26, 95% CI = -0.53, 0.01; P = 0.00) (Fig. 4) and co-dominant form: FF vs ff (OR = -0.42, 95% CI = -0.69, -0.14; P = 0.00) (Fig. 5).

**Relation of the TAQI VDR polymorphism with PTB:** To understand the relation of the TAQI polymorphism with PTB, 33 eligible studies were included. Fixed-effects forms were used. Our analysis depicts the significant associations in all the forms including the allele form: T vs t (OR = -0.03; 95% CI = -0.23, 0.17; P = 0.01) (Fig. 6), dominant form: TT+Tt vs. tt (OR = -0.11, 95% CI = -0.25, 0.04; P = 0.00) (Fig. 7), recessive form: tt vs TT+Tt (OR = -0.29, 95% CI = -0.54, -0.04; P = 0.00) (Fig. 8) and co-dominant form: TT vs tt (OR = -0.34, 95% CI = -0.64, -0.05; P = 0.00) (Fig. 9).

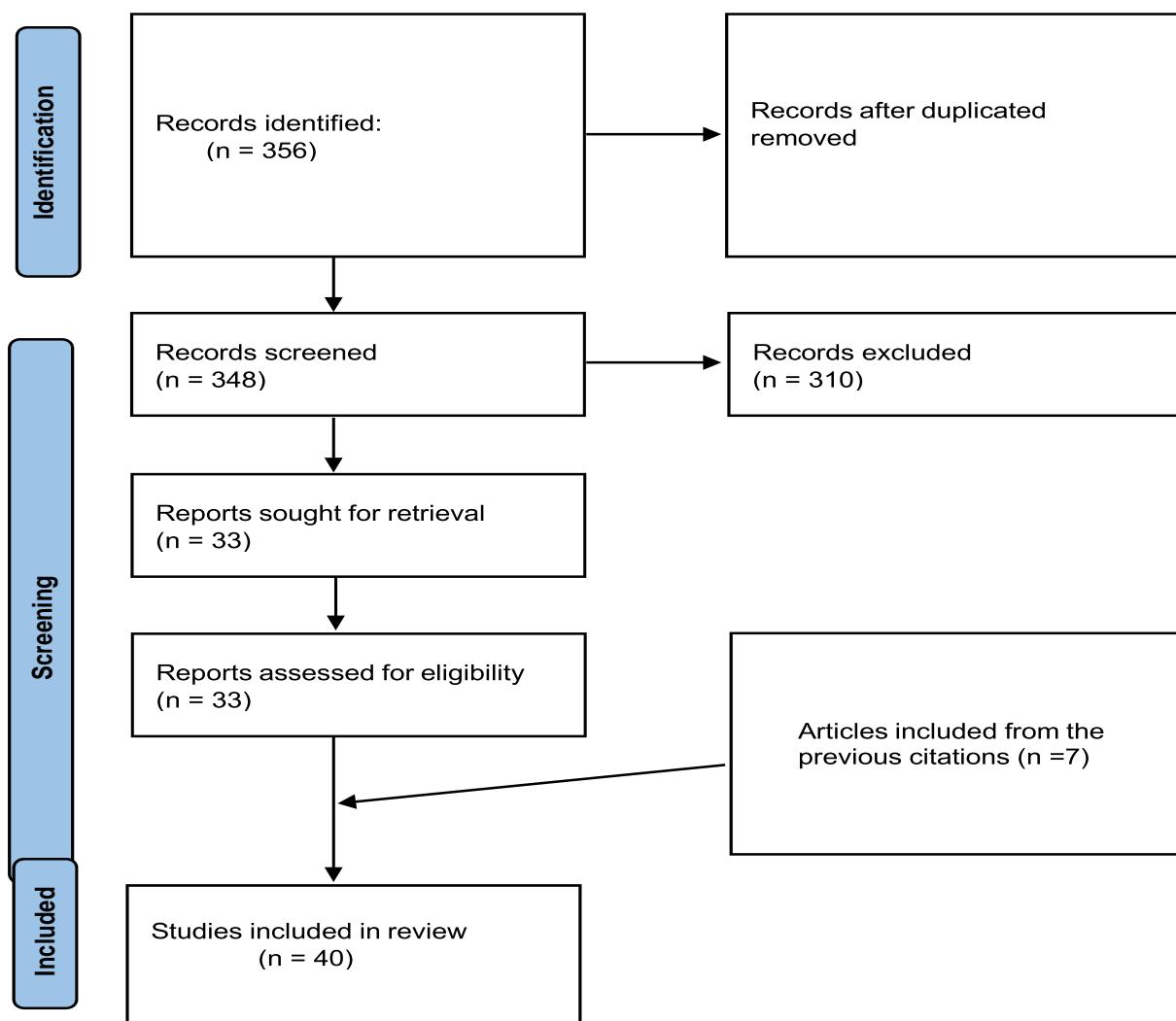



Figure 1: PRISMA flow chart of included

| Study          | Treatment<br>Yes | Treatment<br>No | Control<br>Yes | Control<br>No | Log Odds-Ratio<br>with 95% CI | Weight<br>(%) |
|----------------|------------------|-----------------|----------------|---------------|-------------------------------|---------------|
| Study 1        | 184              | 118             | 633            | 273           | -0.40 [-0.67, -0.13]          | 8.03          |
| Study 2        | 243              | 271             | 536            | 378           | -0.46 [-0.68, -0.24]          | 8.45          |
| Study 3        | 96               | 59              | 94             | 58            | 0.00 [-0.46, 0.46]            | 6.35          |
| Study 4        | 465              | 211             | 316            | 94            | -0.42 [-0.70, -0.14]          | 7.94          |
| Study 5        | 89               | 167             | 67             | 51            | -0.90 [-1.35, -0.46]          | 6.48          |
| Study 6        | 148              | 72              | 167            | 63            | -0.25 [-0.66, 0.15]           | 6.85          |
| Study 7        | 132              | 60              | 171            | 73            | -0.06 [-0.47, 0.35]           | 6.80          |
| Study 8        | 104              | 64              | 117            | 63            | -0.13 [-0.57, 0.30]           | 6.56          |
| Study 9        | 118              | 88              | 105            | 85            | 0.08 [-0.32, 0.48]            | 6.91          |
| Study 10       | 75               | 7               | 77             | 5             | -0.36 [-1.55, 0.83]           | 2.25          |
| Study 11       | 251              | 77              | 60             | 40            | 0.78 [0.30, 1.25]             | 6.22          |
| Study 12       | 161              | 49              | 221            | 67            | -0.00 [-0.42, 0.42]           | 6.70          |
| Study 13       | 221              | 55              | 279            | 103           | 0.39 [0.02, 0.77]             | 7.14          |
| Study 14       | 86               | 92              | 85             | 81            | -0.12 [-0.54, 0.31]           | 6.68          |
| Study 15       | 174              | 66              | 217            | 45            | -0.60 [-1.03, -0.18]          | 6.64          |
| <b>Overall</b> |                  |                 |                |               | <b>-0.17 [-0.37, 0.04]</b>    |               |

Heterogeneity:  $\tau^2 = 0.12$ ,  $I^2 = 76.13\%$ ,  $H^2 = 4.19$ Test of  $\theta_1 = \theta_2$ :  $Q(14) = 52.86$ ,  $p = 0.00$ Test of  $\theta = 0$ :  $z = -1.60$ ,  $p = 0.11$ 

Random-effects REML model

Figure 2: Forest map of allele F vs f of VDR FokI polymorphism

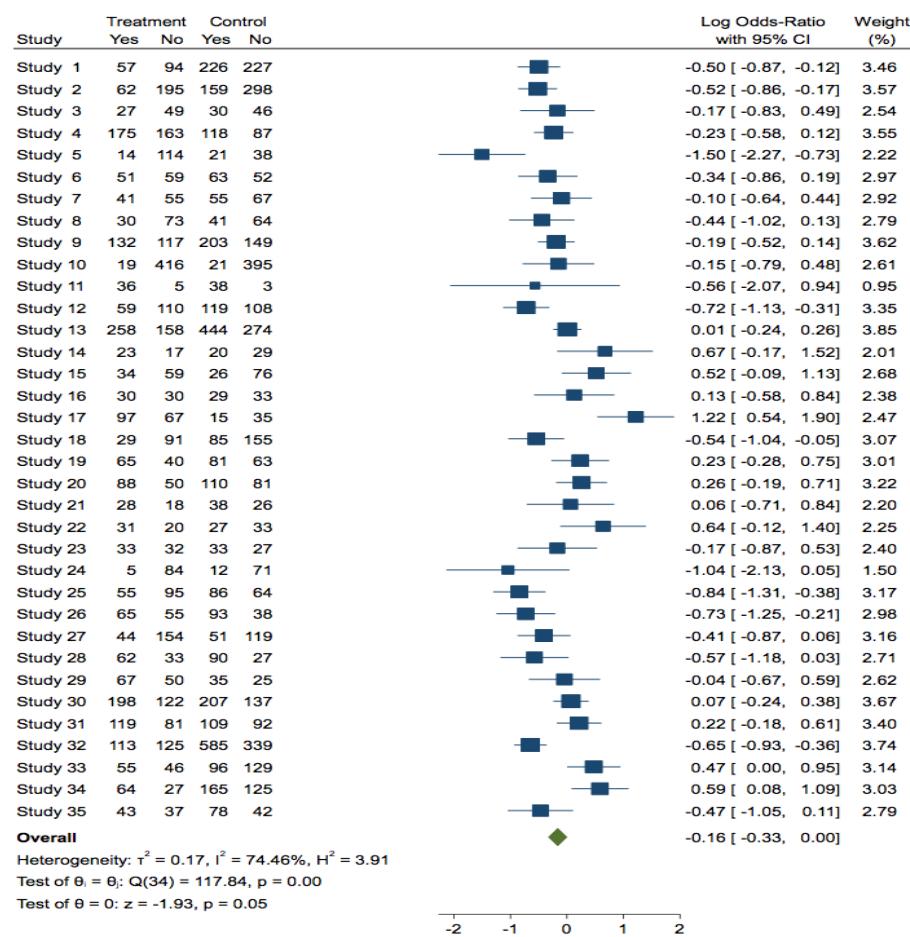



Figure 3: Forest map of dominant genetic form of FF+Ff vs. ff of VDR FokI polymorphism

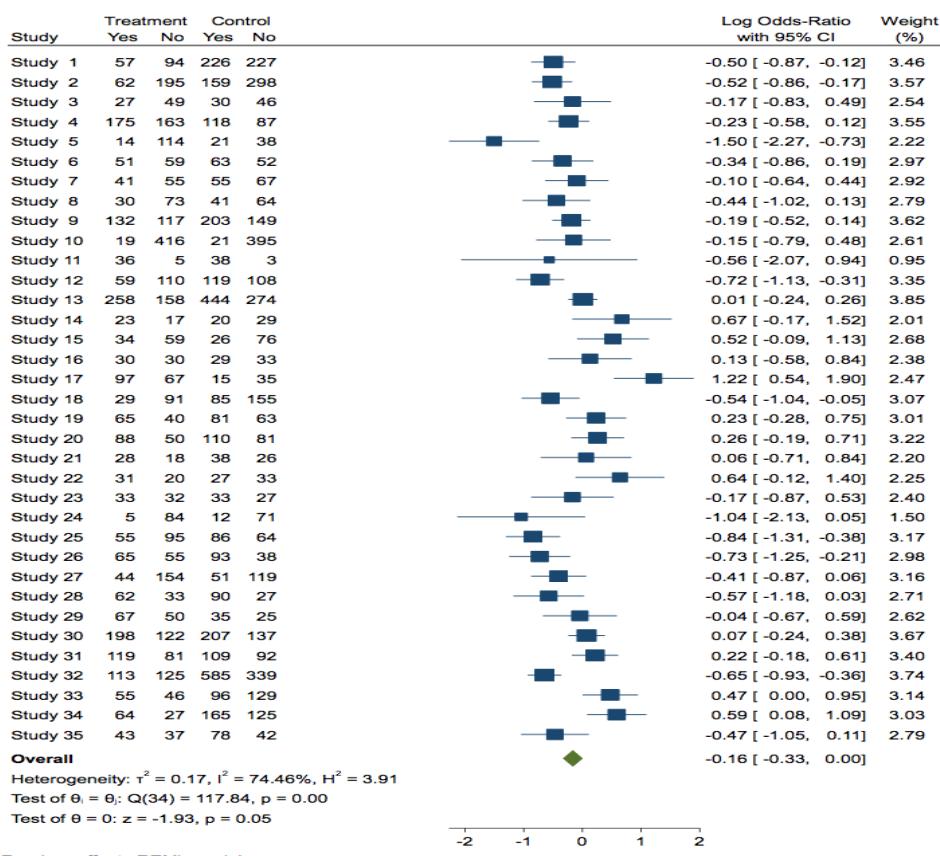



Figure 4: Forest map of recessive genetic form of ff vs. FF+Ff of VDR FokI polymorphism

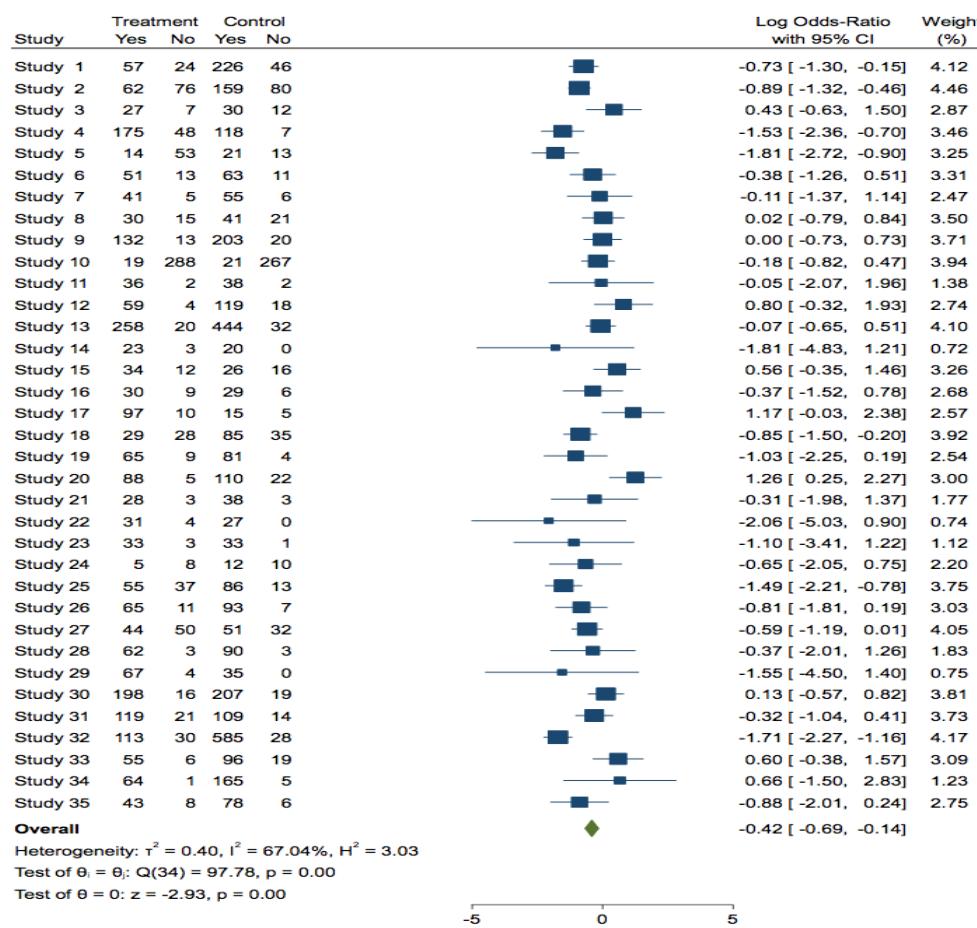



Figure 5: Forest map of co-dominant genetic form of FF vs ff of VDR FokI polymorphism

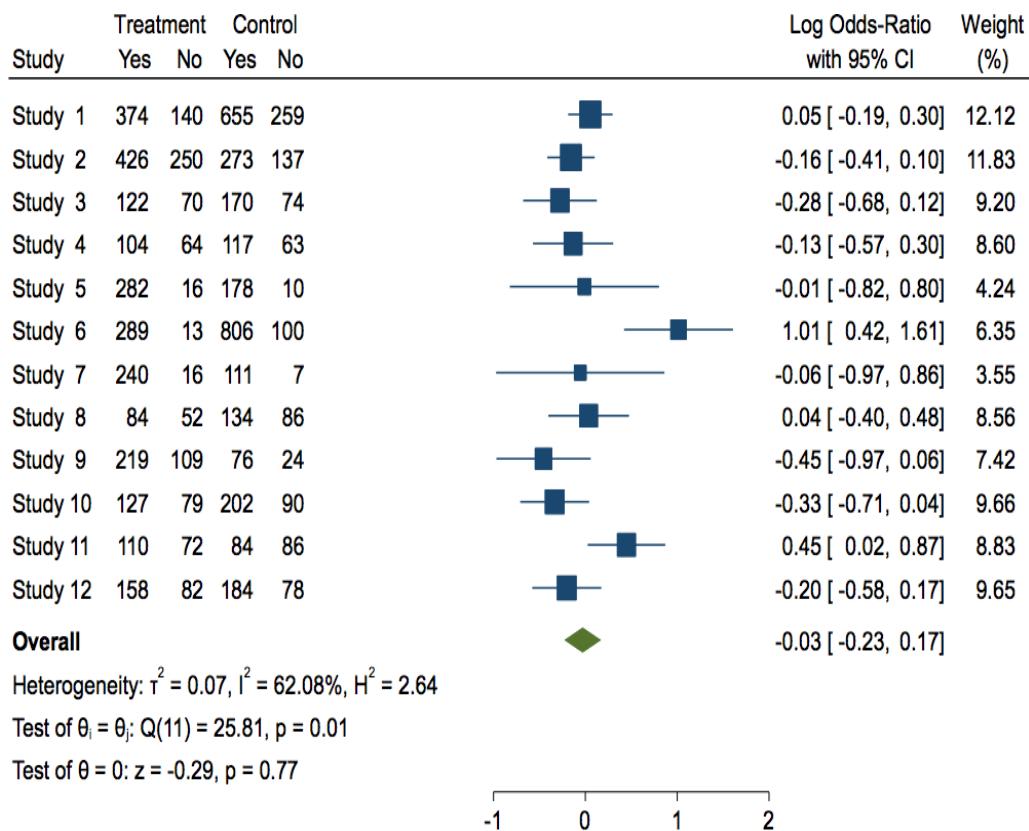



Figure 6: Forest map of allele form of T vs t of VDR TaqI polymorphism

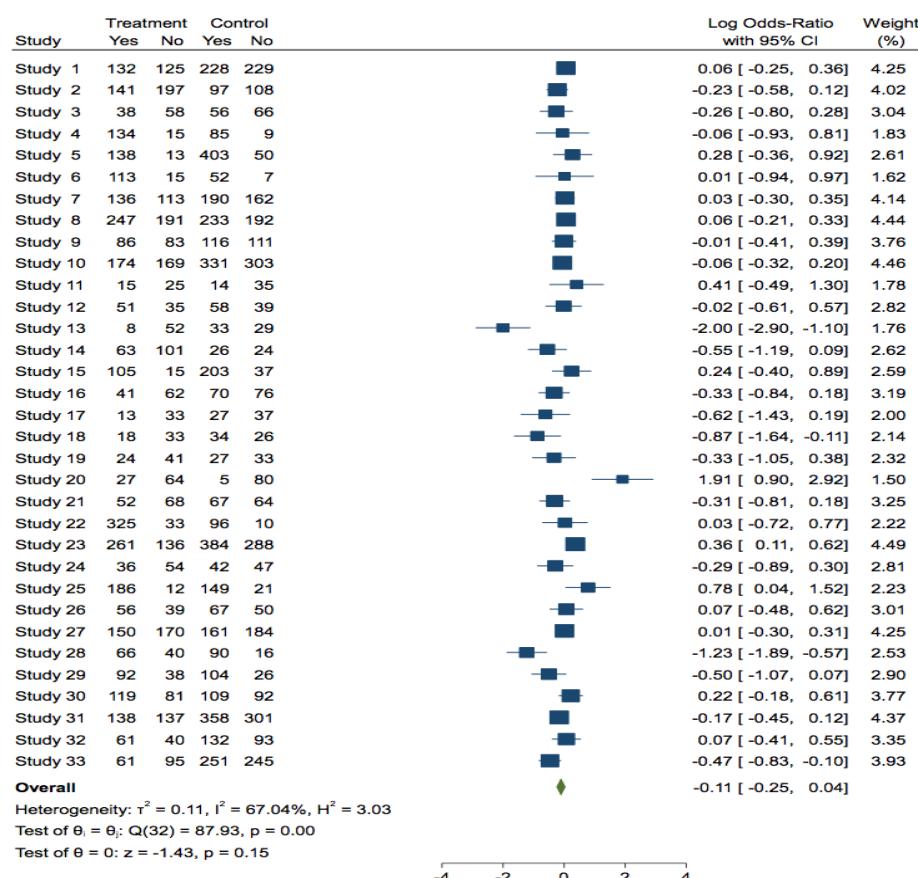



Figure 7: Forest map of dominant form of TT+Tt vs tt of VDR TaqI polymorphism

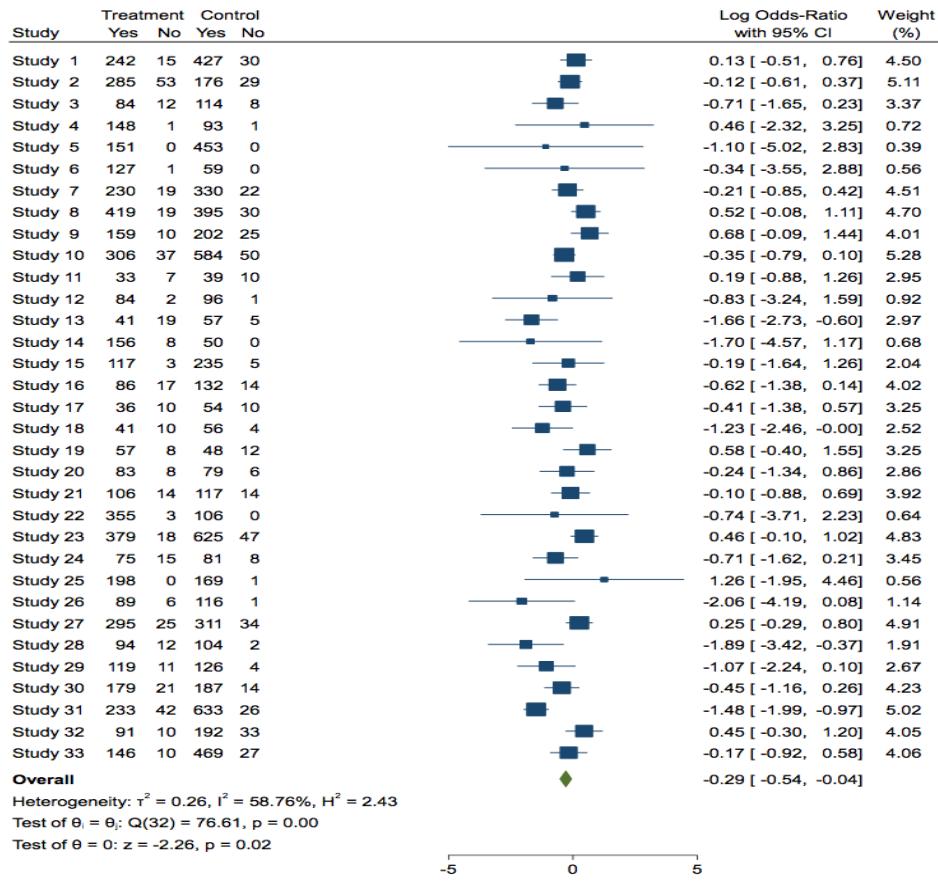



Figure 8: Forest map of recessive form of tt vs. TT+Tt of VDR TaqI polymorphism

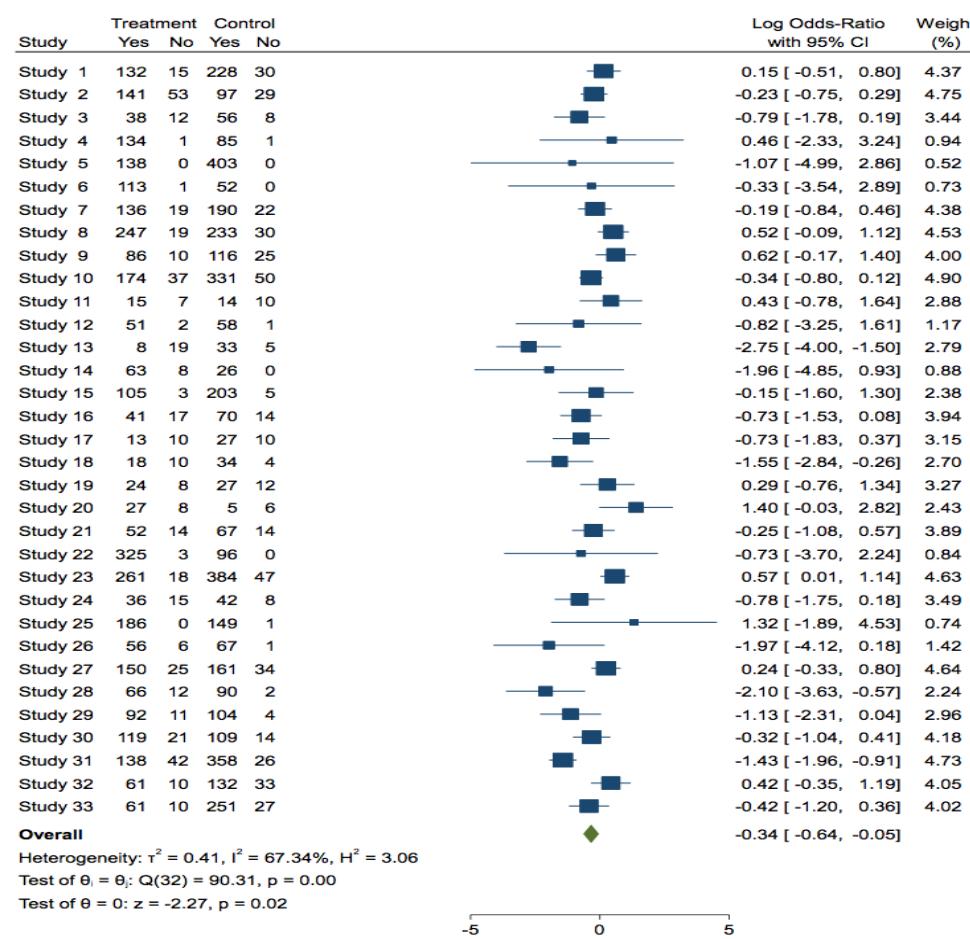
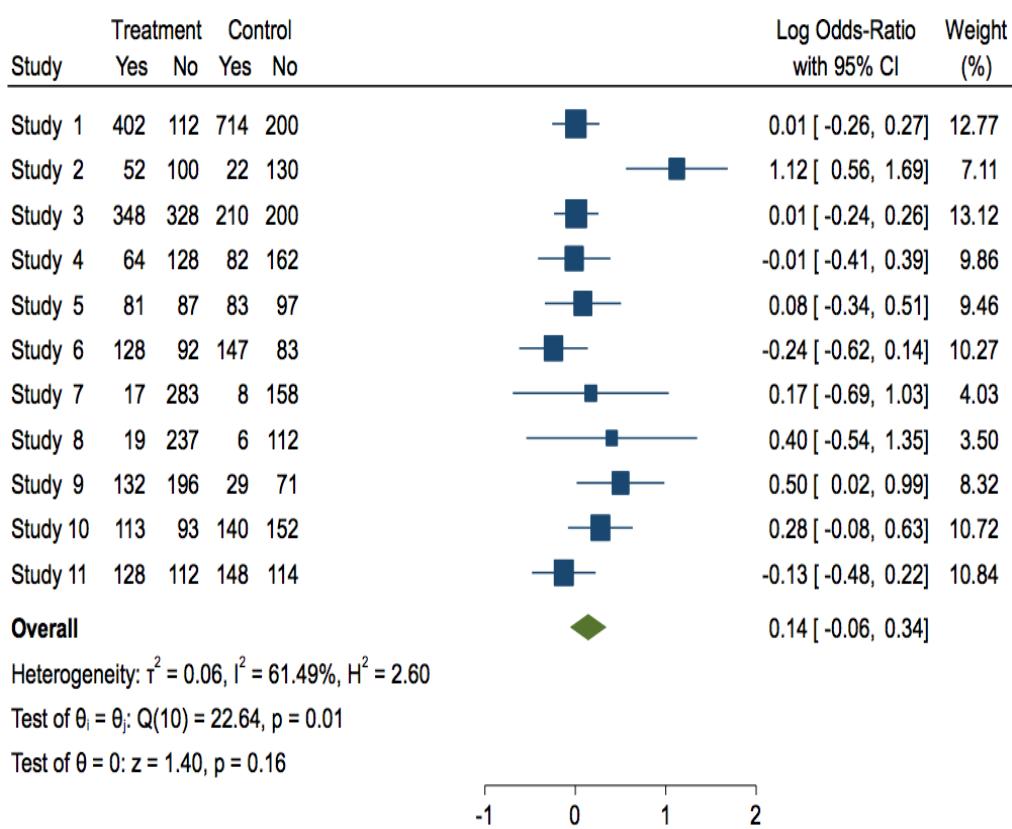
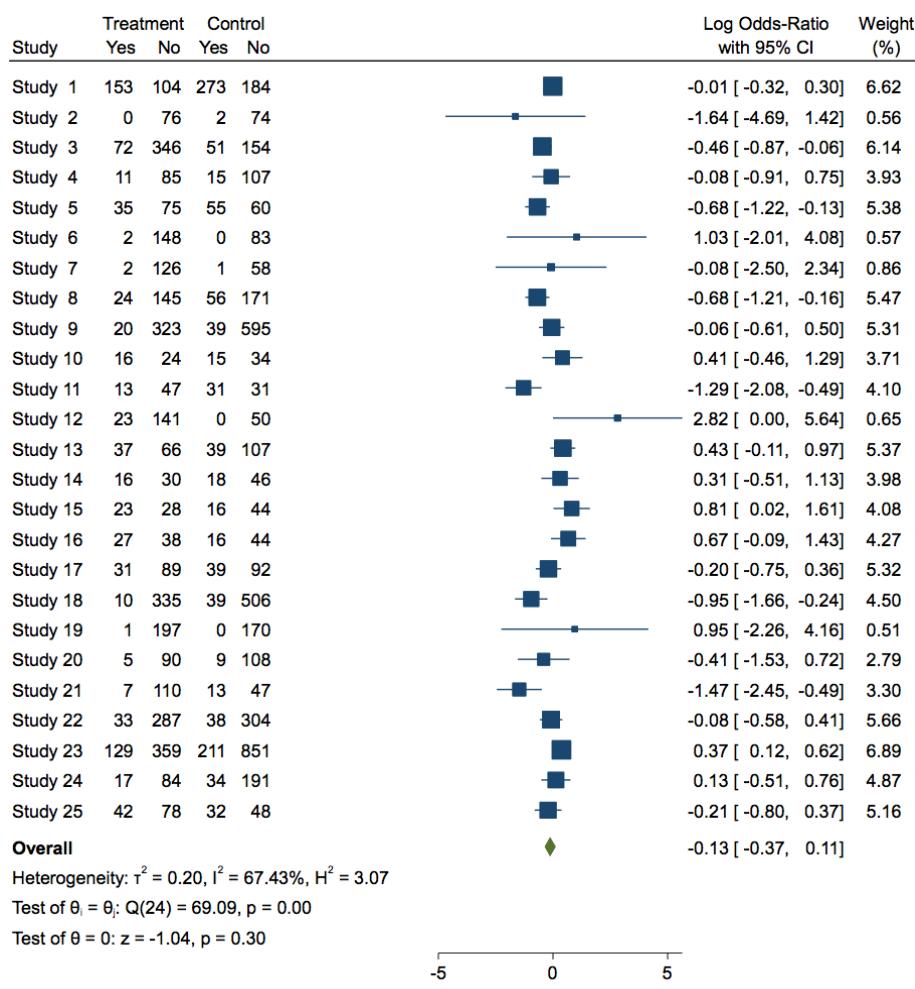
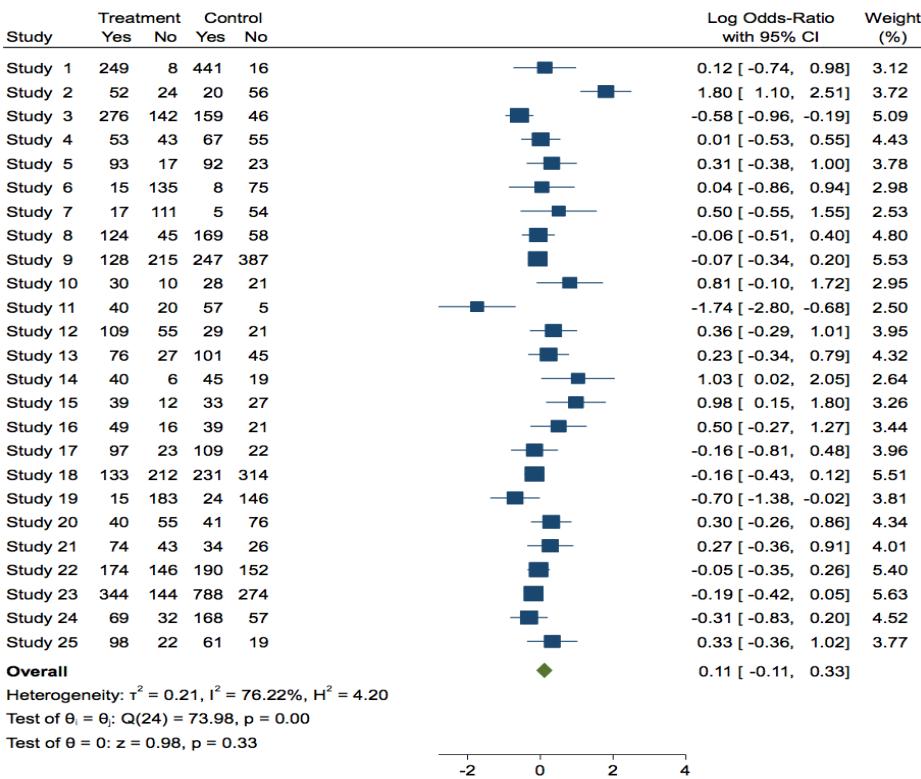




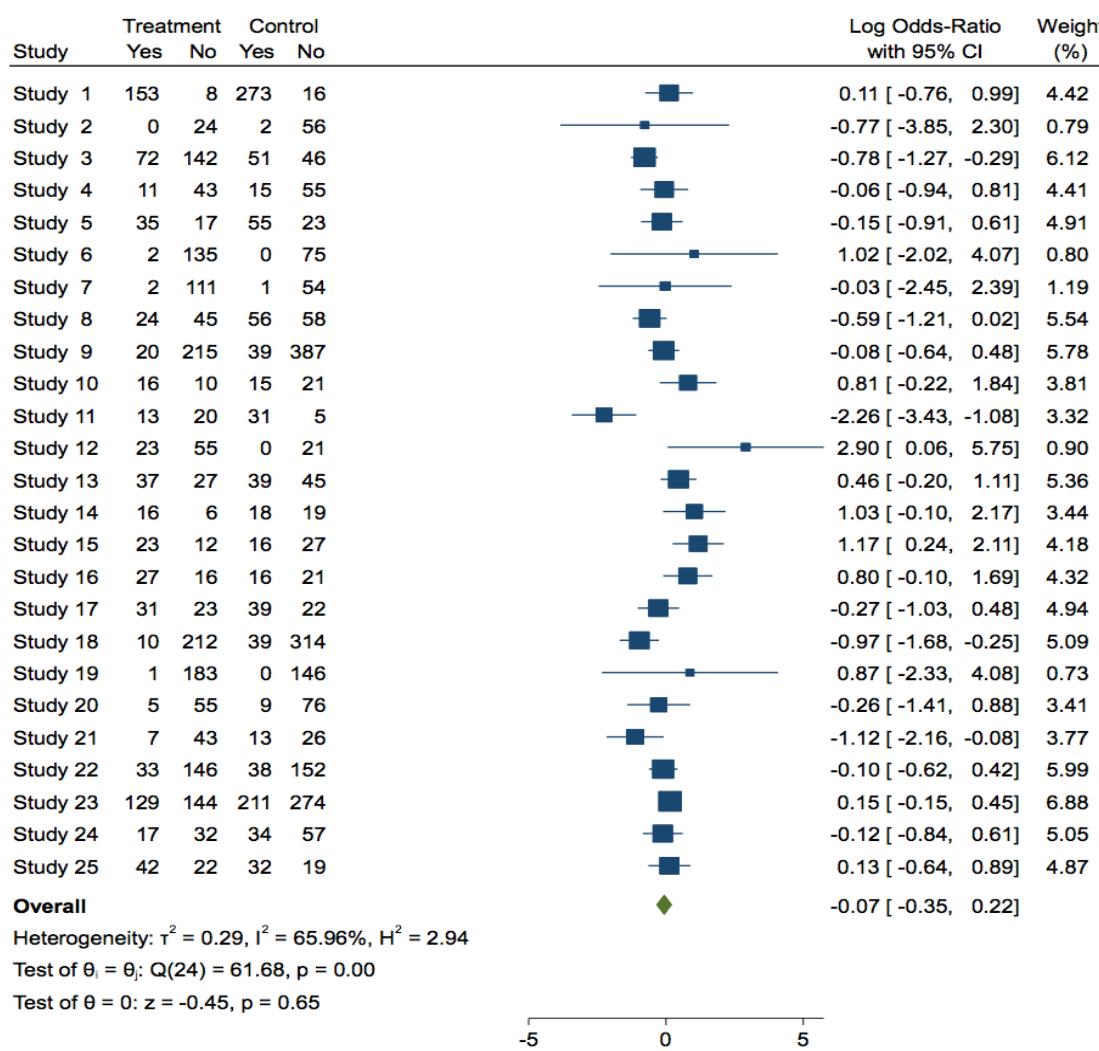

Figure 9: Forest map of co-dominant form of TT vs tt of VDR TaqI polymorphism



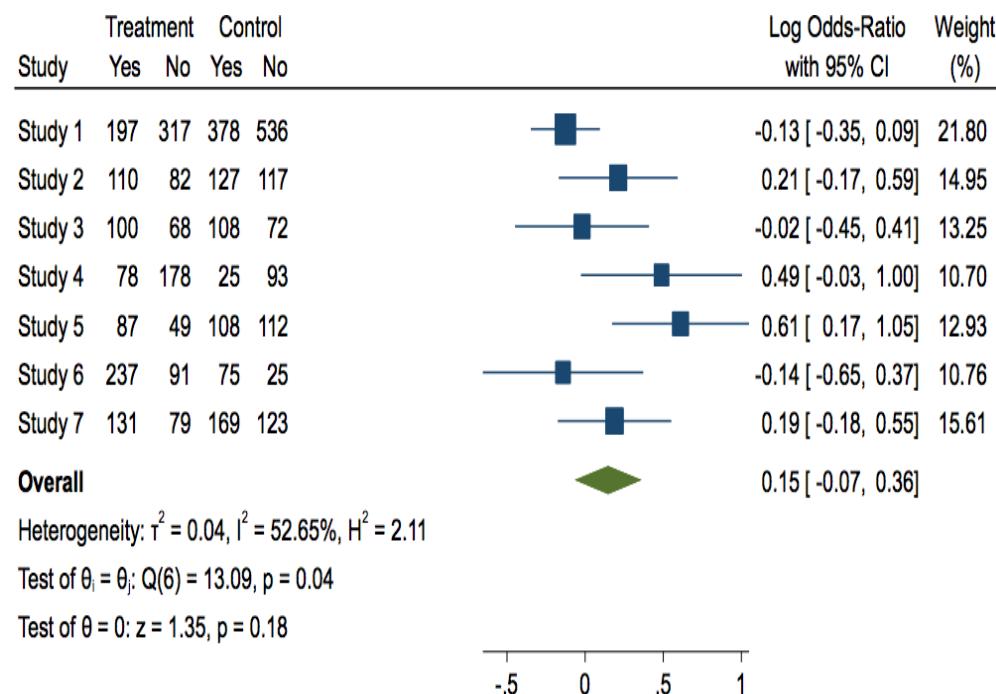
Random-effects REML model


Figure 10: Forest map of allele form of B vs b of VDR BsmI polymorphism




-5 0 5

Random-effects REML model


**Figure 11: Forest map of dominant form of BB+Bb vs bb of VDR BsmI polymorphism**



-2 0 2 4



Random-effects REML model

**Figure 13: Forest map of co-dominant form of BB vs bb of VDR BsmI polymorphism**

Random-effects REML model

**Figure 14: Forest map of allele form A vs a of VDR ApaI polymorphism**

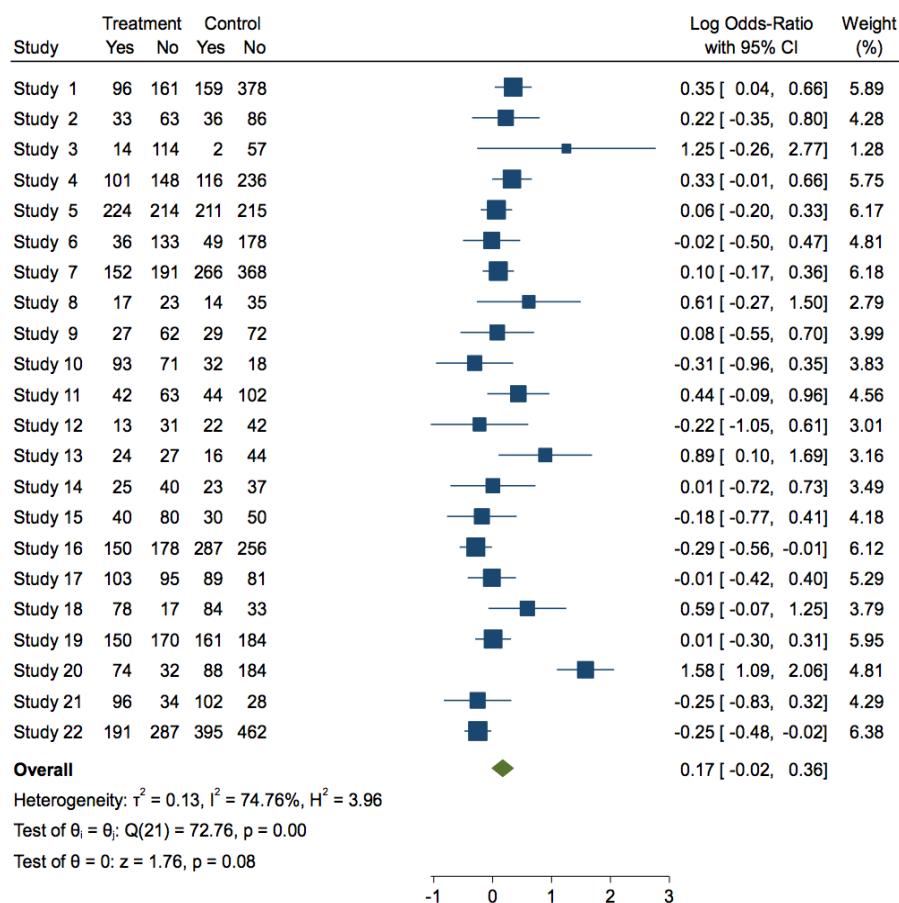



Figure 15: Forest map of dominant form AA + Aa vs aa of VDR ApaI polymorphism

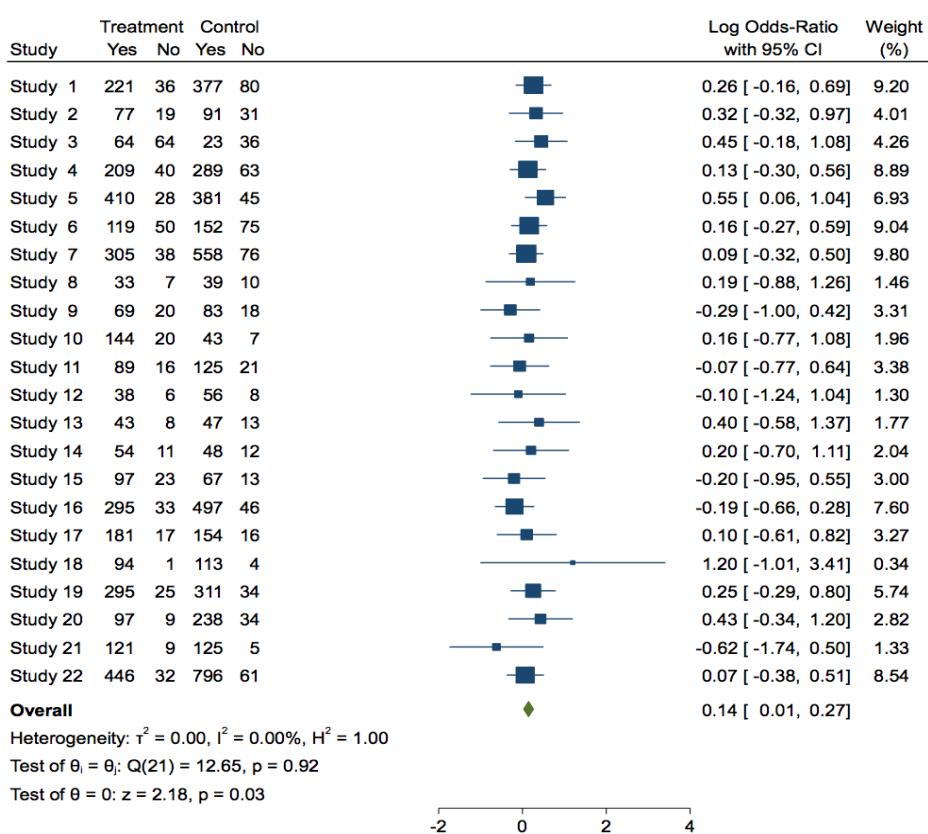
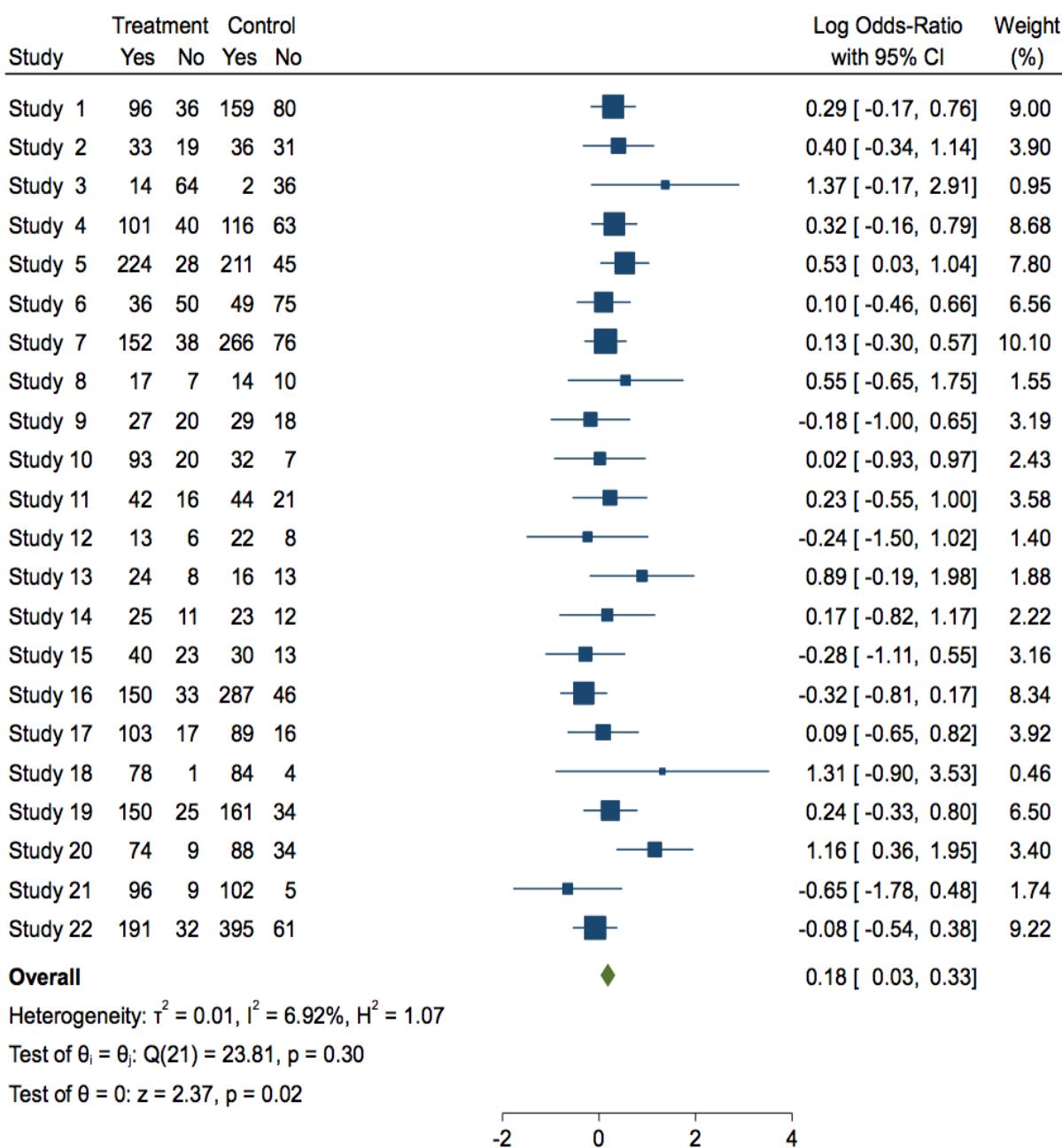
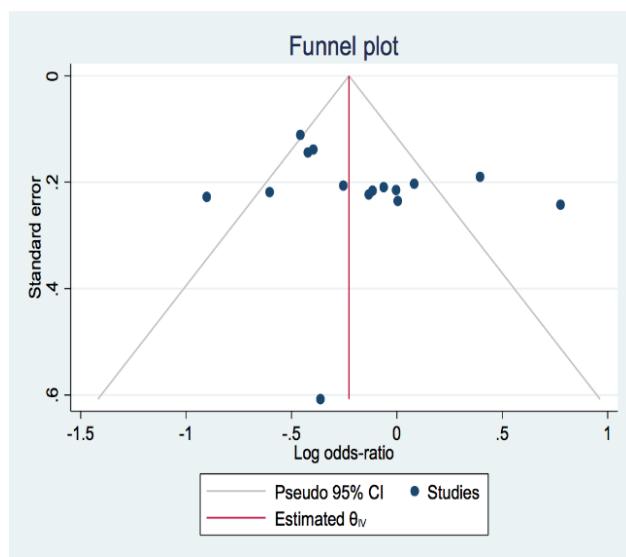



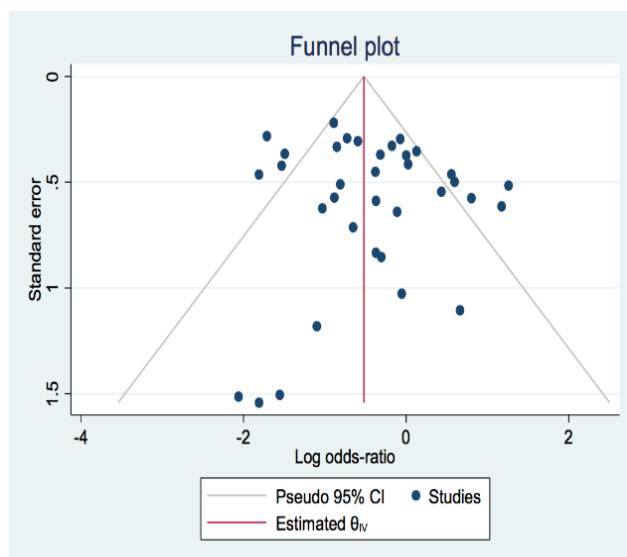

Figure 16: Forest map of recessive form aa vs AA + Aa of VDR ApaI polymorphism



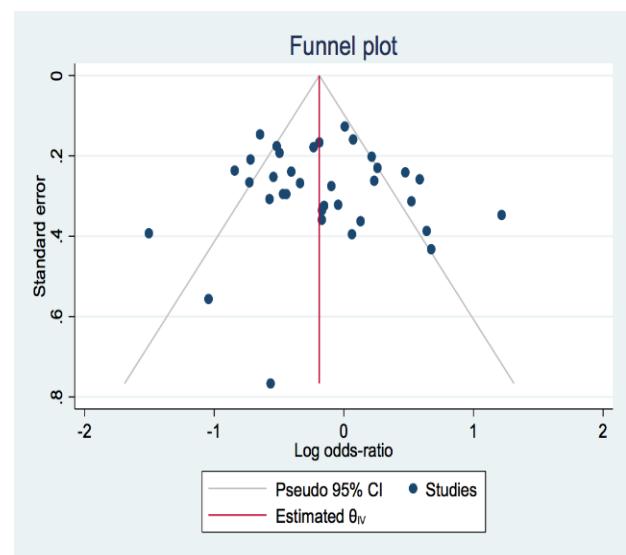
Random-effects REML model


Figure 17: Forest map of co-dominant form AA vs aa of VDR ApaI polymorphism

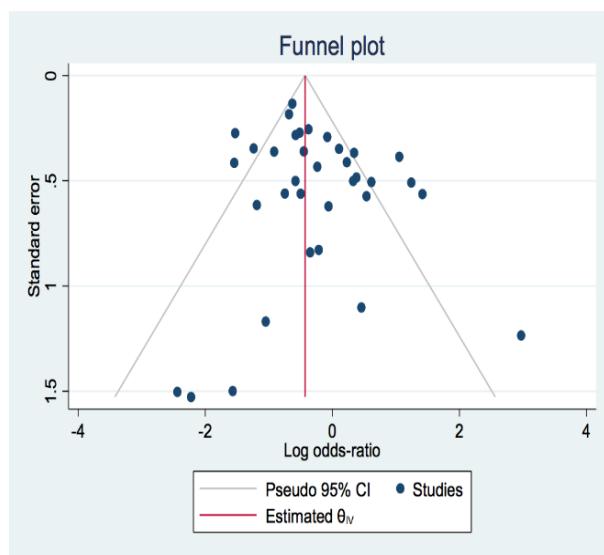
**Relation of the BSMI VDR polymorphism with PTB:** To understand the association of the BSMI polymorphism with PTB, 25 eligible studies were included. Fixed-effects forms were used. Our analysis observed significant associations in all the forms including the allele form: B vs b (OR = 0.14; 95% CI = -0.06, 0.34; P = 0.01) (Fig. 10), dominant form: BB+Bb vs. bb (OR = -0.13, 95% CI = -0.37, 0.11; P = 0.00) (Fig. 11), recessive form: tt vs TT+Tt (OR = 0.11, 95% CI = -0.11, 0.33; P = 0.00) (Fig. 12) and co-dominant form: TT vs tt (OR = -0.07, 95% CI = -0.35, 0.22; P = 0.00) (Fig. 13).


**Association of the APAI VDR polymorphism with PTB:** To understand the association of the APAI polymorphism with PTB, 22 eligible studies were included. Fixed-effects forms were used. Our analysis shows that only one form had

significant associations in all the forms including the allele form: A vs an (OR = 0.15; 95% CI = -0.07, 0.36; P = 0.04) (Fig. 14), dominant form: AA+Aa vs aa (OR = 0.17, 95% CI = -0.02, 0.36; P = 0.00) (Fig. 15), recessive form: aa vs AA+Aa (OR = 0.14, 95% CI = 0.01, 0.27; P = 0.92) (Fig. 16) and co-dominant form: AA vs aa (OR = 0.18, 95% CI = 0.03, 0.33; P = 0.30) (Fig. 17).

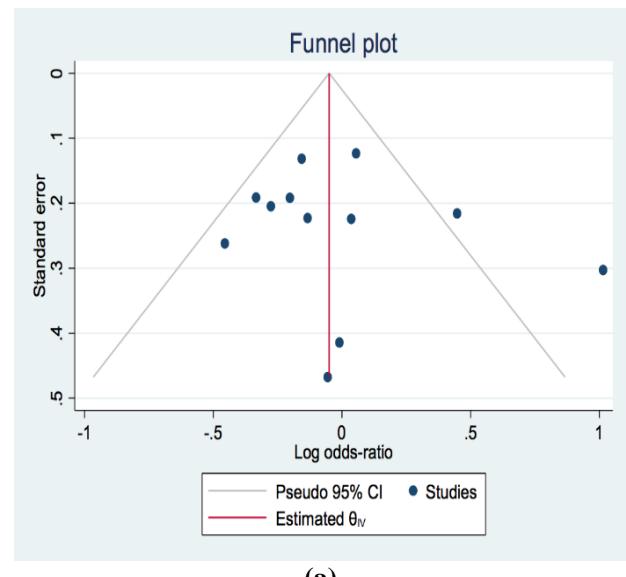

**Publication bias:** Each study was eliminated from the sensitivity scrutiny one at a time to examine the robustness of the obtained results. The meta-analysis results were statistically significant since all the associated pooled ORs in all of the dispersed subgroup investigation remained relatively steady. The symmetrical distribution revealed that there was no publication bias.



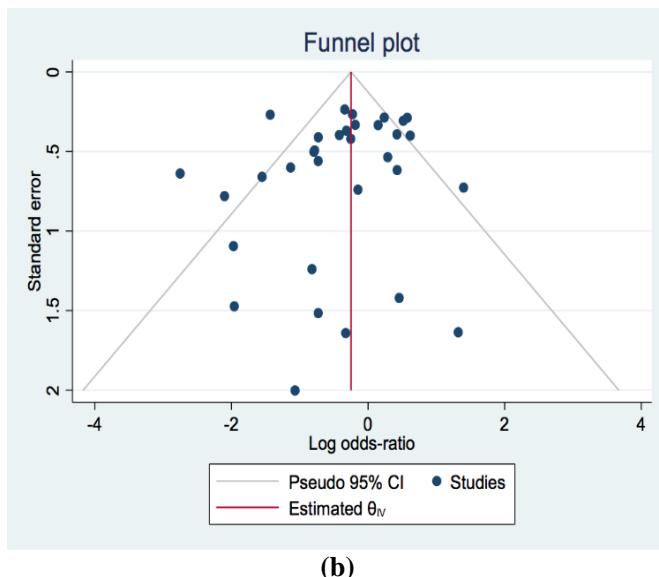

(a)



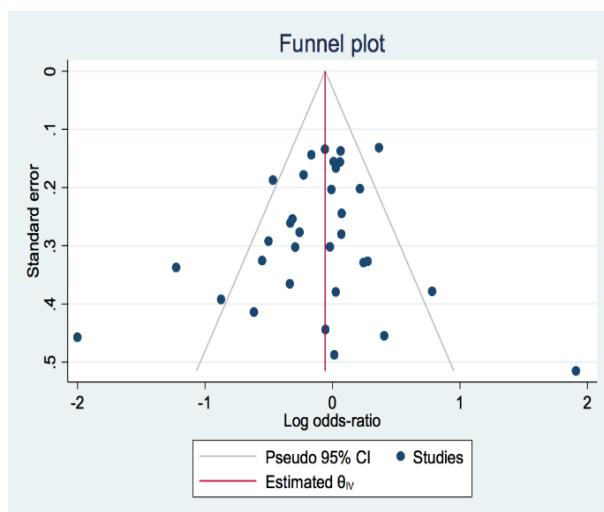
(b)



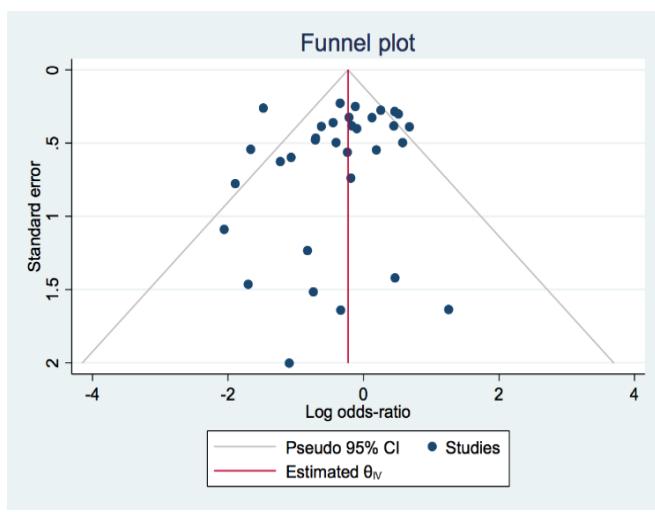

(c)




(d)

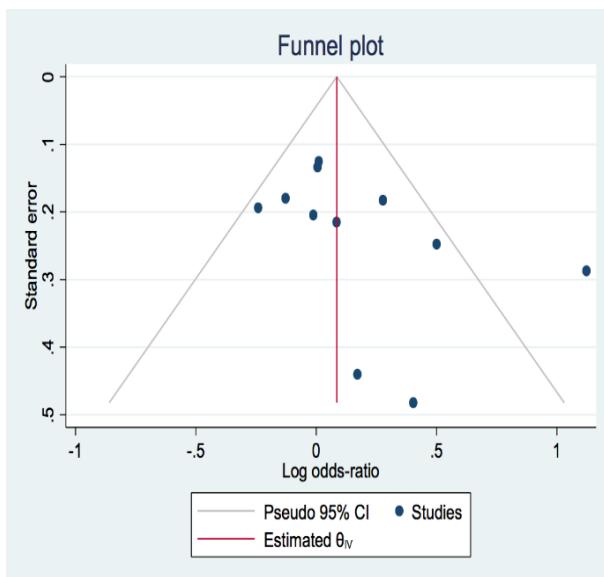

**Fig. 18: Funnel map of VDR FokI polymorphism; A) allele form; B) co-dominant form; C) dominant form; D) recessive form**



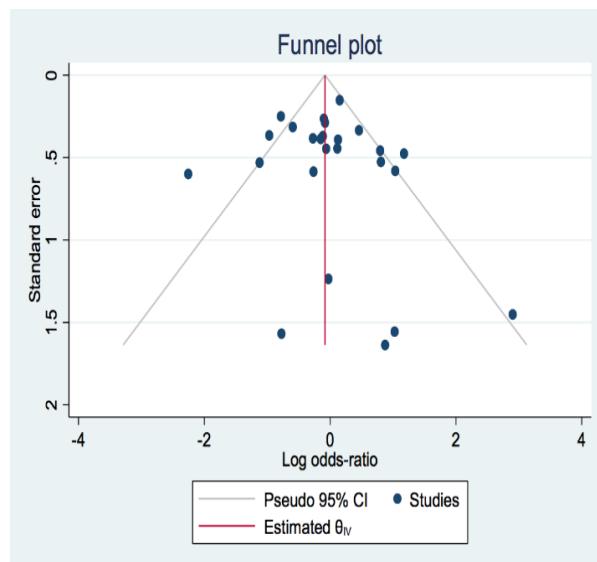

(a)



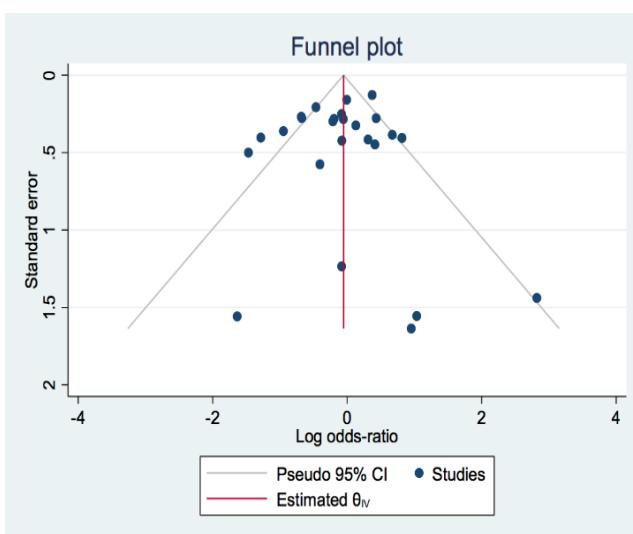
(b)



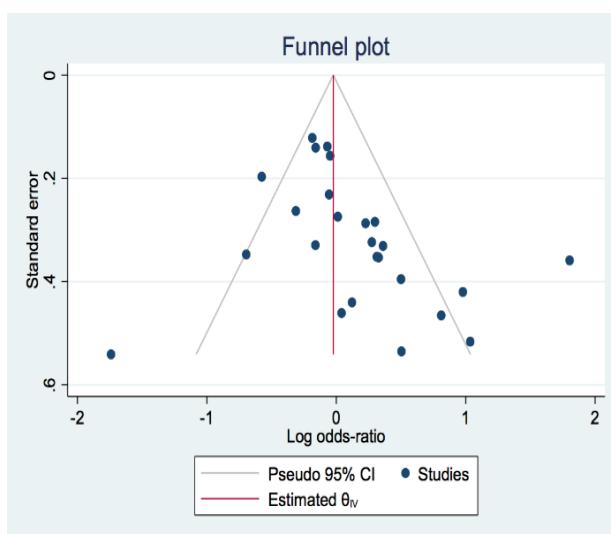

(c)




(d)

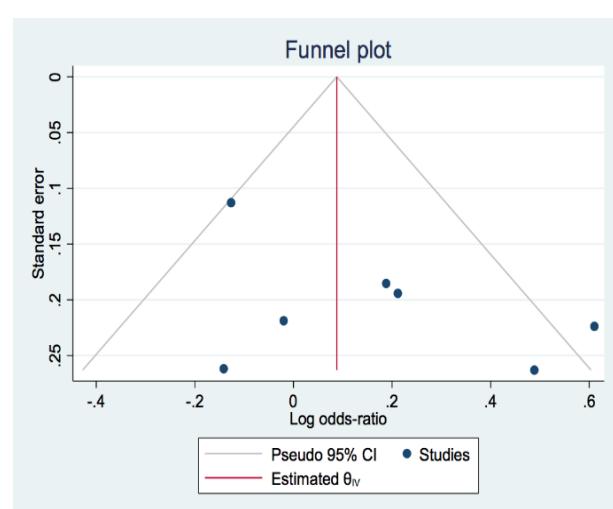

**Fig. 19: Funnel map of VDR TaqI polymorphism; A) allele form; B) co-dominant form; C) dominant form; D) recessive form**



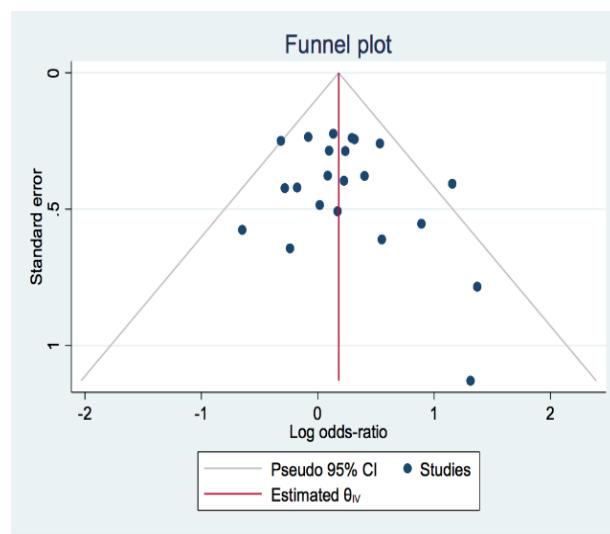

(a)



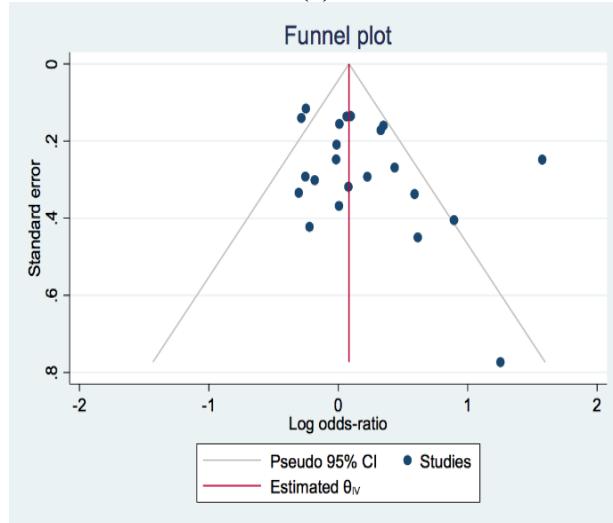
(b)



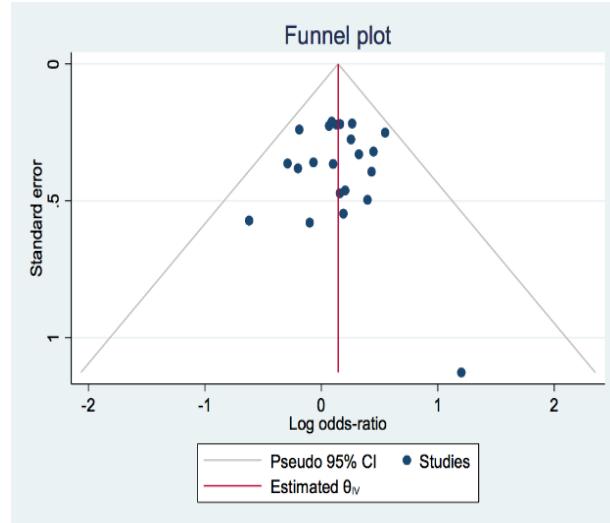

(c)




(d)


**Fig. 20: Funnel map of VDR BsmI polymorphism; A) allele form; B) co-dominant form; C) dominant form; D) recessive form**




(a)



(b)



(c)



(d)

**Fig. 21: Funnel map of VDR ApaI polymorphism; A) allele form; B) co-dominant form; C) dominant form; D) recessive form**

## Discussion

Literature displayed that lower vitamin D levels are more common in TB patients than in healthy controls. The VDR gene plays a vital role in immunological pathways by activating responses that combat germs within macrophage cells. Consequently, variations in VDR (polymorphisms) may lead to altered immunological responses. Although many SNPs exist in the VDR gene, only four main variants (FokI, BsmI, TaqI and ApaI) were selected for analysis in the included studies. This meta-analysis with 40 published data specifies that VDR FokI polymorphism contributes to the hazard of TB. Recent meta-analyses conclude that the FF genotype of the FokI polymorphism showed a high hazard of TB in Asian populations but not in Caucasian or African peoples. Limited studies have focused on Latin American populations.

Some studies in Peruvian patients indicated a connection between certain VDR genotypes and the time required for sputum culture conversion, but not with active TB. The

meta-analysis was conducted to discover the genetic links amongst the most frequently studied VDR gene variations (FokI, TaqI, BsmI and ApaI) and their association with susceptibility to PTB. According to our analysis, TaqI polymorphism does not show any association with PTB. However, the FokI, BsmI and ApaI polymorphisms were found to be significantly correlated with PTB susceptibility. This association was further supported by various forms of analysis, indicating an amplified hazard of PTB with these alleles. In the East Asian people, FokI shows high-risk PTB, due to genetic heterogeneity and differences in clinical characteristics among various populations.

Despite these significant findings, the study had certain limitations, mainly due to the limited availability of data that prevented more extensive research of the VDR polymorphisms' connection with clinical topographies of PTB. Nonetheless, the meta-analysis suggests that the VDR FokI, BsmI and ApaI polymorphisms could serve as genetic biomarkers for certain forms of tuberculosis, highlighting

their potential role in disease susceptibility. However, additional large-scale studies encompassing diverse ethnic populations are required to fully comprehend the roles of VDR polymorphisms in PTB susceptibility. Moreover, future research should explore the involvement of other VDR variants in tuberculosis development.

## Conclusion

Our meta-analysis recommended that VDR *FokI*, *BsmI* and *ApalI* gene polymorphism is linked with greater susceptibility to tuberculosis while *TaqI* was found with no susceptibility to PTB.

## Acknowledgement

Dr. Shripad A Patil, Dr. Ekta Sinha and Mr. Shobhit Gupta are acknowledged for their vital contribution to the data collection and analysis.

## References

1. Acen E.L., Worodria W., Mulamba P., Kambugu A. and Erume J., The frequency distribution of vitamin D Receptor fok I gene polymorphism among Ugandan pulmonary TB patients, *F1000Research*, **5**, DOI:10.12688/f1000research.9109.1 (2016)
2. Agerberth B. et al, The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations, *Blood*, **96**, 3086–93 (2000)
3. Alagarsu K., Selvaraj P., Swaminathan S., Narendran G. and Narayanan P.R., 5'regulatory and 3'untranslated region polymorphisms of vitamin D receptor gene in South Indian HIV and HIV–TB patients, *Journal of Clinical Immunology*, **29**(2), 196-204 (2009)
4. Al-Turki H.A., Sadat-Ali M., Al-Elq H., Al-Mulhim F.A. and Al-Ali K.A., 25-Hydroxyvitamin D levels among healthy Saudi Arabian women, *Saudi Med. J.*, **29**(12), 1765–1768 (2008)
5. Babb C., Van Der Merwe L., Beyers N., Pheiffer C., Walzl G., Duncan K., Van Helden P. and Hoal E.G., Vitamin D receptor gene polymorphisms and sputum conversion time in pulmonary tuberculosis patients, *Tuberculosis*, **87**(4), 295-302 (2007)
6. Banoei M.M., Mirsaeidi M.S., Houshmand M., Tabarsi P., Ebrahimi G., Zargari L., Kashani B.H., Masjedi M.R., Mansouri S.D. and Ramirez J., Vitamin D receptor homozygote mutant tt and bb are associated with susceptibility to pulmonary tuberculosis in the Iranian population, *International Journal of Infectious Diseases*, **14**(1), e84-e85 (2010)
7. Bornman L., Campbell S.J., Fielding K., Bah B., Sillah J., Gustafson P., Manneh K., Lisse I., Allen A., Sirugo G. and Sylla A., Vitamin D receptor polymorphisms and susceptibility to tuberculosis in West Africa: a case-control and family study, *Journal of Infectious Diseases*, **190**(9), 1631-1641 (2004)
8. Cao Y., Wang X., Cao Z. and Cheng X., Vitamin D receptor gene *FokI* polymorphisms and tuberculosis susceptibility: a meta-analysis, *Archives of Medical Science*, **12**(5), 1118-1134 (2016)
9. Christakos S., Lieben L., Masuyama R. and Carmeliet G., Vitamin D endocrine system and the intestine, *BoneKEy Rep.*, <https://doi.org/10.1038/bonekey.2013.230> (2014)
10. Chung C., Silwal P., Kim N., Modlin R.L. and Jo E.K., Vitamin D-cathelicidin axis: At the crossroads between protective immunity and pathological inflammation during infection, *Immune Network*, **20**(2), e12 (2020)
11. Chun R.F., Liu P.T., Modlin R.L., Adams J.S. and Hewison M., Impact of vitamin D on immune function: lessons learned from genome-wide analysis, *Front Physiol.*, **5**, 151 (2014)
12. Coşar E. et al. The relation of serum vitamin D and cathelicidin levels in recurrent lower respiratory tract infections in preschool children, *J Pediatr. Inf.*, **12**(2), 50–55 (2018)
13. de Albuquerque Borborema M.E., de Souza Pereira J.J., dos Santos Peixoto A., Crovella S., Schindler H.C., da Silva Rabello M.C. and de Azevêdo Silva J., Differential distribution in vitamin D receptor gene variants and expression profile in Northeast Brazil influences upon active pulmonary tuberculosis, *Molecular Biology Reports*, **47**(9), 7317-7322 (2020)
14. Delgado J.C., Baena A., Thim S. and Goldfeld A.E., Ethnic-specific genetic associations with pulmonary tuberculosis, *The Journal of Infectious Diseases*, **186**(10), 1463-1468 (2002)
15. Devi K.R., Mukherjee K., Chelleng P.K., Kalita S., Das U. and Narain K., Association of VDR gene polymorphisms and 22 bp deletions in the promoter region of TLR2Δ22 (-196-174) with increased risk of pulmonary tuberculosis: A case-control study in tea garden communities of Assam, *Journal of clinical Laboratory Analysis*, **32**(7), e22562 (2018)
16. Fang Y., van Meurs J.B., Alesio A., Jhamai M., Zhao H., Rivadeneira F., Hofman A., van Leeuwen J.P., Jehan F., Pols H.A. and Uitterlinden A.G., Promoter and 3'-untranslated-region hapotypes in the vitamin D receptor gene predispose to osteoporotic fracture: the Rotterdam study, *The American Journal of Human Genetics*, **77**(5), 807-823 (2005)
17. Fernández-Mestre M., Villasmil Á., Takiff H. and Fuentes Alcalá Z., NRAMP1 and VDR gene polymorphisms in susceptibility to tuberculosis in Venezuelan population, *Disease Markers*, DOI:10.1155/2015/860628 (2015)
18. Fitness J., Floyd S., Warndorff D.K., Sichali L., Malema S., Crampin A.C., Fine P.E. and Hill A.V., Large-scale candidate gene study of tuberculosis susceptibility in the Karonga district of northern Malawi, *The American Journal of Tropical Medicine and Hygiene*, **71**(3), 341-349 (2004)
19. Harishankar M. and Selvaraj P., Regulatory role of Cdx-2 and *Taq I* polymorphism of vitamin D receptor gene on chemokine expression in pulmonary tuberculosis, *Human Immunology*, **77**(6), 498-505 (2016)
20. Jafari M., Nasiri M.R., Sanaei R., Anoosheh S., Farnia P., Sepanjnia A. and Tajik N., The NRAMP1, VDR, TNF- $\alpha$ , ICAM1, TLR2 and TLR4 gene polymorphisms in Iranian patients with pulmonary tuberculosis: A case–control study, *Infection, Genetics and Evolution*, **39**, 92-98 (2016)

21. Joshi L., Ponnana M., Penmetsa S.R., Nallari P., Valluri V. and Gaddam S., Serum Vitamin D Levels and VDR Polymorphisms (B sm I and F ok I) in Patients and their Household Contacts Susceptible to Tuberculosis, *Scandinavian Journal of Immunology*, **79**(2), 113-119 (2014)

22. Kang T.J., Jin S.H., Yeum C.E., Lee S.B., Kim C.H., Lee S.H., Kim K.H., Shin E.S. and Chae G.T., Vitamin D receptor gene TaqI, BsmI and FokI polymorphisms in Korean patients with tuberculosis, *Immune Network*, **11**(5), 253-257 (2011)

23. Karoli R., Shakya S. and Singh P.S., Vitamin D deficiency in patients with tuberculosis and its correlation with glycemic status, *International Journal of Research in Medical Sciences*, **8**(1), 239-243 (2019)

24. Lee S.W., Chuang T.Y., Huang H.H., Liu C.W., Kao Y.H. and Wu L.S.H., VDR and VDBP genes polymorphisms associated with susceptibility to tuberculosis in a Han Taiwanese population, *Journal of Microbiology, Immunology and Infection*, **49**(5), 783-787 (2016)

25. Liu P.T. et al, Convergence of IL-1 $\beta$  and VDR activation pathways in human TLR2/1-induced antimicrobial responses, *PLoS One*, **4**, e5810, <https://doi.org/10.1371/journal.pone.0005810> (2009)

26. Liu W. et al, VDR and NRAMP1 gene polymorphisms in susceptibility to pulmonary tuberculosis among the Chinese Han population: a case-control study, *Int. J. Tuberc. Lung Dis.*, **8**(4), 428-434 (2004)

27. Lombard Z., Dalton D.L., Venter P.A., Williams R.C. and Bornman L., Association of HLA-DR-DQ and vitamin D receptor alleles and haplotypes with tuberculosis in the Venda of South Africa, *Human Immunology*, **67**(8), 643-654 (2006)

28. Marashian S.M., Farnia P., Seyf S., Anoosheh S. and Velayati A.A., Evaluating the role of vitamin D receptor polymorphisms on susceptibility to tuberculosis among Iranian patients: a case-control study, *Tüberküloz ve Toraks Dergisi*, **58**(2), 147-153 (2010)

29. Medapati R.V., Suvvari S., Godi S. and Gangisetty P., NRAMP1 and VDR gene polymorphisms in susceptibility to pulmonary tuberculosis among Andhra Pradesh population in India: a case-control study, *BMC Pulmonary Medicine*, **17**(1), 1-6 (2017)

30. Merza M., Farnia P., Anoosheh S., Varahram M., Kazampour M., Pajand O., Saeif S., Mirsaeidi M., Masjedi M.R., Velayati A.A. and Hoffner S., The NRAMP1, VDR and TNF- $\alpha$  gene polymorphisms in Iranian tuberculosis patients: the study on host susceptibility, *Brazilian Journal of Infectious Diseases*, **13**, 252-256 (2009)

31. Naeem Z. et al, Vitamin D status among population of Qassim Region, Saudi Arabia, *Int. J. Health Sci.*, **5**(2), 116 (2011)

32. Nimitphong H., Saetung S., Chanprasertyotin S., Chailurkit L.O. and Ongphiphadhanakul B., Changes in circulating 25-hydroxyvitamin D according to vitamin D binding protein genotypes after vitamin D3 or D2 supplementation, *Nutr. J.*, **12**, 39 (2013)

33. Nnoham K.E. and Clarke A., Low serum vitamin D levels and tuberculosis: a systematic review and meta-analysis, *International Journal of Epidemiology*, **37**(1), 113-9 (2008)

34. Olesen R., Wejse C., Velez D.R., Bisseye C., Sodemann M., Aaby P., Rabna P., Worwui A., Chapman H., Diatta M. and Adegbola R.A., DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans, *Genes & Immunity*, **8**(6), 456-467 (2007)

35. Panda S., Tiwari A., Luthra K., Sharma S.K. and Singh A., Association of Fok1 VDR polymorphism with vitamin D and its associated molecules in pulmonary tuberculosis patients and their household contacts, *Scientific Reports*, **9**(1), 1-10 (2019)

36. Panwar A., Garg R.K., Malhotra H.S., Jain A., Singh A.K., Prakash S., Kumar N., Garg R., Mahdi A.A., Verma R. and Sharma P.K., 25-Hydroxy vitamin D, vitamin D receptor and toll-like receptor 2 polymorphisms in spinal tuberculosis: a case-control study, *Medicine*, **95**(17), e3418 (2016)

37. Rathore J., Sharma S.K., Singh B., Banavaliker J.N., Sreenivas V., Srivastava A.K., Mohan A., Sachan A., Harinarayan C.V. and Goswami R., Risk and outcome of multidrug-resistant tuberculosis: vitamin D receptor polymorphisms and serum 25(OH) D, *The International Journal of Tuberculosis and Lung Disease*, **16**(11), 1522-1528 (2012)

38. Rizvi I., Garg R.K., Jain A., Malhotra H.S., Singh A.K., Prakash S., Kumar N., Garg R., Verma R., Mahdi A.A. and Sharma P.K., Vitamin D status, vitaminD receptor and toll like receptor-2 polymorphisms in tuberculous meningitis: a case-control study, *Infection*, **44**(5), 633-640 (2016)

39. Roth D.E., Soto G., Arenas F., Bautista C.T., Ortiz J., Rodriguez R., Cabrera L. and Gilman R.H., Association between vitamin D receptor gene polymorphisms and response to treatment of pulmonary tuberculosis, *Journal of Infectious Diseases*, **190**(5), 920-927 (2004)

40. Salimi S., Farajian-Mashhad F., AlaviNaini R., Talebian G. and Narooie-Nejad M., Association between vitamin D receptor polymorphisms and haplotypes with pulmonary tuberculosis, *Biomedical Reports*, **3**(2), 189-194 (2015)

41. Selvaraj P., Anand S.P., Harishankar M. and Alagarasu K., Plasma 1, 25 dihydroxy vitamin D 3 level and expression of vitamin D receptor and cathelicidin in pulmonary tuberculosis, *Journal of Clinical Immunology*, **29**(4), 470-478 (2009)

42. Selvaraj P., Chandra G., Kurian S.M., Reetha A.M. and Narayanan P.R., Association of vitamin D receptor gene variants of BsmI, ApaI and FokI polymorphisms with susceptibility or resistance to pulmonary tuberculosis, *Current Science*, **84**(12), 1564-1568 (2003)

43. Selvaraj P., Kurian S.M., Chandra G., Reetha A.M., Charles N. and Narayanan P.R., Vitamin D receptor gene variants of BsmI, ApaI, TaqI and FokI polymorphisms in spinal tuberculosis, *Clinical Genetics*, **65**(1), 73-76 (2004)

44. Selvaraj P., Vidyarani M., Alagarasu K., Anand S.P. and Narayanan P.R., Regulatory role of promoter and 3'UTR variants

of vitamin D receptor gene on cytokine response in pulmonary tuberculosis, *Journal of Clinical Immunology*, **28**(4), 306-313 (2008)

45. Sharma P.R., Singh S., Jena M., Mishra G., Prakash R., Das P.K., Bamezai R.N.K. and Tiwari P.K., Coding and non-coding polymorphisms in VDR gene and susceptibility to pulmonary tuberculosis in tribes, castes and Muslims of Central India, *Infection, Genetics and Evolution*, **11**(6), 1456-1461 (2011)

46. Silva-Ramírez B., Saenz-Saenz C.A., Bracho-Vela L.A., Peñuelas-Urquides K., Mata-Tijerina V., Escobedo-Guajardo B.L., González-Ríos N.R., Vázquez-Monsiváis O. and de León M.B., Association between vitamin D receptor gene polymorphisms and pulmonary tuberculosis in a Mexican population, *Indian Journal of Tuberculosis*, **66**(1), 70-75 (2019)

47. Sinaga B.Y., Amin M., Siregar Y. and Sarumpaet S.M., Correlation between Vitamin D receptor gene FOK1 and BSMI polymorphisms and the susceptibility to pulmonary tuberculosis in an Indonesian Batak-ethnic population, *Acta Medica Indonesiana*, **46**(4), 275-82 (2014)

48. Singh A., Gaughan J.P. and Kashyap V.K., SLC11A1 and VDR gene variants and susceptibility to tuberculosis and disease progression in East India, *The International Journal of Tuberculosis and Lung Disease*, **15**(11), 1468-1475 (2011)

49. Søborg C., Andersen A.B., Range N., Malenganisho W., Friis H., Magnussen P., Temu M.M., Changalucha J., Madsen H.O. and Garred P., Influence of candidate susceptibility genes on tuberculosis in a high endemic region, *Molecular Immunology*, **44**(9), 2213-2220 (2007)

50. Sonawane A. et al, Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages, *Cell Microbiol.*, **13**, 1601-17 (2011)

51. Sørensenl O., Arnljots K., Cowland J.B., Bainton D.F. and Borregaard N., The human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils, *Blood*, **90**, 2796-2803 (1997)

52. Uitterlinden A.G., Fang Y., Van Meurs J.B., Pols H.A. and Van Leeuwen J.P., Genetics and biology of vitamin D receptor polymorphisms, *Gene*, **338**(2), 143-156 (2004)

53. van Etten E., Verlinden L., Giulietti A., Ramos-Lopez E., Branisteau D.D., Ferreira G.B., Overbergh L., Verstuyf A., Bouillon R., Roep B.O. and Badenhoop K., The vitamin D receptor gene FokI polymorphism: functional impact on the immune system, *European Journal of Immunology*, **37**(2), 395-405 (2007)

54. Vidyarani M., Selvaraj P., Raghavan S. and Narayanan P.R., 2009. Regulatory role of 1, 25-dihydroxyvitamin D3 and vitamin D receptor gene variants on intracellular granzyme A expression in pulmonary tuberculosis, *Experimental and Molecular Pathology*, **86**(1), 69-73 (2009)

55. Wilbur A.K., Kubatko L.S., Hurtado A.M., Hill K.R. and Stone A.C., Vitamin D receptor gene polymorphisms and susceptibility M. tuberculosis in native Paraguayans, *Tuberculosis*, **87**(4), 329-337 (2007)

56. World Health Organization, World Health Organization Global Tuberculosis Report 2023, <https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023> (2023)

57. Wu L., Deng H., Zheng Y., Mansjö M., Zheng X., Hu Y. and Xu B., An association study of NRAMP1, VDR, MBL and their interaction with the susceptibility to tuberculosis in a Chinese population, *International Journal of Infectious Diseases*, **38**, 129-135 (2015)

58. Zhang Y., Zhu H., Yang X., Guo S., Liang Q., Lu Y. and Chen X., Serum vitamin D level and vitamin D receptor genotypes may be associated with tuberculosis clinical characteristics: A case-control study, *Medicine*, **97**(30), e11732 (2018).

(Received 06<sup>th</sup> July 2024, accepted 05<sup>th</sup> September 2024)